
Hailo Dataflow Compiler
User Guide

Release 3.27.0
26 March 2024

Confidential and Proprietary. Unauthorized Reproduction Prohibited

Hailo Dataflow Compiler User Guide

Table of Contents

I User Guide 2

1 Hailo Dataflow Compiler Overview 3
1.1 Introduction . 3
1.2 Model Build Process . 3
1.3 Deployment Process . 5
1.4 Supported Hardware Architectures . 6

2 Changelog 9

3 Dataflow Compiler Installation 19
3.1 System Requirements . 19
3.2 Installing / Upgrading Hailo Dataflow Compiler . 19

4 Tutorials 21
4.1 Dataflow Compiler Tutorials Introduction . 21
4.2 Parsing Tutorial . 22
4.3 Model Optimization Tutorial . 25
4.4 Compilation Tutorial . 38
4.5 Inference Tutorial . 39
4.6 Accuracy Analysis Tool Tutorial . 43
4.7 Quantization Aware Training Tutorial . 47

5 Building Models 54
5.1 Translating Tensorflow and ONNX Models . 56
5.2 Model Optimization . 74
5.3 Model Compilation . 109
5.4 Model Scripts . 119
5.5 Supported Layers . 120

6 Profiler and Other Command Line Tools 133
6.1 Using Hailo Command Line Tools . 133
6.2 Running the Profiler . 134

7 Additional Topics 142
7.1 Environment Variables . 142

II API Reference 143

8 Model Build API Reference 144
8.1 hailo_sdk_client.runner.client_runner . 144
8.2 hailo_sdk_client.exposed_definitions . 153
8.3 hailo_sdk_client.hailo_archive.hailo_archive . 155
8.4 hailo_sdk_client.tools.hn_modifications . 155

9 Common API Reference 156
9.1 hailo_sdk_common.model_params.model_params . 156
9.2 hailo_sdk_common.hailo_nn.hailo_nn . 156
9.3 hailo_sdk_common.hailo_nn.hn_definitions . 157

Bibliography 158

Python Module Index 159

Page i Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Disclaimer and Proprietary Information Notice

Copyright

© 2024 Hailo Technologies Ltd (“Hailo”). All Rights Reserved.

No part of this document may be reproduced or transmitted in any form without the expressed, written permission
of Hailo. Nothing contained in this document should be construed as granting any license or right to use proprietary
information for that matter, without the written permission of Hailo.

This version of the document supersedes all previous versions.

General Notice

Hailo, to the fullest extent permitted by law, provides this document “as-is” and disclaims all warranties, either ex-
press or implied, statutory or otherwise, including but not limited to the implied warranties of merchantability, non-
infringement of third parties’ rights, and fitness for particular purpose.

Although Hailo used reasonable efforts to ensure the accuracy of the content of this document, it is possible that
this document may contain technical inaccuracies or other errors. Hailo assumes no liability for any error in this
document, and for damages, whether direct, indirect, incidental, consequential or otherwise, that may result from
such error, including, but not limited to loss of data or profits.

The content in this document is subject to change without prior notice and Hailo reserves the right to make changes
to content of this document without providing a notification to its users.

Page 1 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Part I

User Guide

Page 2 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

1. Hailo Dataflow Compiler Overview

1.1. Introduction

The Dataflow Compiler API is used for compiling users’ models to Hailo binaries. The input of the Dataflow Compiler
is a trained Deep Learning model, the output is a binary file which is loaded to the Hailo device.

The HailoRT API is used for deploying the built model on the target device. This library is used by the runtime appli-
cations.

Hailo Dataflow Compiler (SDK)

Hailo Driver

Hailo software components

Other software components

NN Core
(part of Hailo Vision Processor or AI Accelerator)

Model Parser

Model Optimizer

Resource Allocator

Compiler

Profiler
Emulator

CLI toolsPython API

C/C++ API and Library

OS IP Stack

PCIeEthernet

Hailo Model Zoo

User
Models

Pipeline Elements

Application Examples

TAPPAS

User
Applications

HailoRT

Integration
Tool

TOOLS RUNTIME FRAMEWORKS PLUGINS

Machine Learning Frameworks

Pre-trained
Models

Re-training
Env

Build & Eval Tools

In preview

pyHailoRT
(Python API)

CLI

Runtime EnvironmentModel Build Environment

Integrated

Figure 1. Detailed block diagram of Hailo software packages

1.2. Model Build Process

The Hailo Dataflow Compiler toolchain enables users to generate a Hailo executable binary file (HEF) based on input
from a Tensorflow checkpoint, a Tensorflow frozen graph file, a TFLite file, or an ONNX file. The build process consists
of several steps including translation of the original model to a Hailo model, model parameters optimization, and
compilation.

Page 3 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://www.tensorflow.org/guide/checkpoint

Hailo Dataflow Compiler User Guide

User’s Tensorflow/ONNX Model
(e.g. Checkpoint)

Hailo Tensorflow/ONNX Translator

Allocate Resources and Generate
Compiled Binary File

Hailo Model Optimization

Hailo Executable File (HEF)

Hailo Profiler Tool

Analyze
Hailo
Model

Resources

Analyze
Numeric
Model

Accuracy

Hailo Emulator
Tool

Calibration
images

Hailo Archive (HAR)
Model representation and parameters

(32-bits weights)

Hailo Archive (HAR)
Optimized model representation and

parameters (quantized weights)

Figure 2. Model build process, starting in a Tensorflow or ONNX model and ending with a Hailo binary (HEF)

Page 4 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

1.2.1. Tensorflow and ONNX Translation

After the user has prepared the model in its original format, it can be converted into Hailo- compatible representa-
tion files. The translation API receives the user’s model and generates an internal Hailo representation format (HAR
compressed file, which includes HN and NPZ files). The HN model is a textual JSON output file. The weights are also
returned as a NumPy NPZ file.

1.2.2. Profiler

The Profiler tool uses the HAR file and profiles the expected performance of the model on hardware. This includes
the number of required devices, hardware resources utilization, and throughput (in frames per second). Breakdown
of the profiling figures for each of the model’s layers is also provided.

1.2.3. Emulator

The Dataflow Compiler Emulator allows users to run inference on their model without actual hardware. The Emulator
supports two main modes: native mode and quantized mode. The native mode runs the original model with float32
parameters, and the quantized mode provides results that mimics the hardware implementation. The native mode
can be used to validate the Tensorflow/ONNX translation process and for calibration (see next section), while the
quantized mode can be used to analyze the optimized model’s accuracy.

1.2.4. Model Optimization

After the user generates the HAR representation, the next step is to convert the parameters from float32 to int8. To
convert the parameters, the user should run the model emulation in native mode on a small set of images and collect
activation statistics. Based on these statistics, the calibration module will generate a new network configuration for
the 8-bit representation. This includes int8 weights and biases, scaling configuration, and HW configuration.

1.2.5. Compiling theModel into a Binary Image

Now the model can be compiled into a HW compatible binary format with the extension HEF. The Dataflow Compiler
Tool allocates hardware resources to reach the highest possible fps within reasonable allocation difficulty. Then
the microcode is compiled and the HEF is generated. This whole step is performed internally, so from the user’s
perspective the compilation is done by calling a single API.

1.3. Deployment Process

After the model is compiled, it can be used to run inference on the target device. The HailoRT library provides access
to the device in order to load and run the model. This library is accessible from both C/C++ and Python APIs. It also
includes command line tools.

On Hailo-8, if the device is connected to the host through PCIe, the HailoRT library uses Hailo’s PCIe driver to com-
municate with the device. If Ethernet is used, the library uses the Linux IP stack to communicate. On Hailo-15, the
HailoRT library communicates with the neural code through an internal interface.

The HailoRT library can be installed on the same machine as the Dataflow Compiler (on accelerator modules, such
as Hailo-8) or on a separate machine. A Yocto layer is provided to allow easy integration of HailoRT to embedded
environments.

Page 5 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

1.4. Supported Hardware Architectures

1.4.1. Hailo-8™ family

Hailo-8™ is a series of AI accelerator modules, that allows edge devices to run deep learning applications at full scale
more efficiently, effectively, and sustainably than other AI chips and solutions, while significantly lowering costs.

Figure 3. Hailo-8 modules

The relevant hardware architecture types that should be used in the compilation process:

hailo8

Use hw_arch=hailo8 to compile for Hailo-8 based devices, such as: Hailo-8 , Century, or custom Chip-on-Board
solutions.

This is the default compilation target (unless requested otherwise).

Page 6 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/products/hailo-8/
https://hailo.ai/products/hailo-8-century-pcie-card/

Hailo Dataflow Compiler User Guide

hailo8l

Use hw_arch=hailo8l to compile for Hailo-8L device, such as: Hailo-8L, or custom Chip-on-Board solutions.

hailo8r

Use hw_arch=hailo8r to compile for the Hailo-8 Mini PCIe device.

1.4.2. Hailo-15™ family

Hailo-15™ is a series of AI vision processors, featuring up to 20 TOPS of AI performance. The Hailo-15 is a System-on-
a-Chip (SoC) that combines Hailo’s AI capabilities with advanced computer vision engines, generating premium image
quality and advanced video analytics.

Figure 4. Hailo-15 Evaluation Board

Page 7 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/products/hailo-8l/
https://hailo.ai/products/hailo-8-mini-pcie-ai-acceleration-module/

Hailo Dataflow Compiler User Guide

hailo15h

Use hw_arch=hailo15h to compile for the Hailo-15H device.

hailo15m

Use hw_arch=hailo15m to compile for the Hailo-15M device.

Page 8 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/products/hailo-15/
https://hailo.ai/products/hailo-15/

Hailo Dataflow Compiler User Guide

2. Changelog

Dataflow Compiler v3.27.0 (April 2024)

Parser

• Added information to logger after model translation is completed:

– Mapping input layers to original input node names, to ease creation of feed dict for native infer-
ence.

– Listing output layers by their original names, in the same order specified by the user (or as the
original model, if not specified).

Post Processing

• Added support for NanoDet <https://github.com/RangiLyu/nanodet> meta-arch based on YOLOv8 post-
processing.

• Added support with post-processing of bbox decoding only in YOLOv5 by using bbox_decoding_only=True.

• YOLOv5 SEG NMS for instance segmentation task is supported in all stages of emulation and compilation
with engine=cpu (preview).

Emulator

• Added emulation support for NV21 and i420 input conversions.

Dataflow Compiler v3.26.0 (January 2024)

General

• Hailo Dataflow Compiler now supports the Hailo-15M device.

Model Optimization

• Resolution reduction support for multiple input models.

• Full Precision Optimization:

– Full precision models are serialized to Hailo archive in additional states: QUANTIZED_MODEL,
COMPILED_MODEL.

• output_encoding_vector added to include a different multiplicative scale for each feature (preview).

• Improve large models optimization time and memory consumption.

Compiler

• Improve Compilation time for big models in all hardware architectures for multi-context and single-
context networks.

Kernels

• reduce_sum is now available also on width and hight axis (together).

Post Processing

• YOLOv8 NMS is supported in all stages of emulation and compilation with engine=cpu.

Parser

• Added support for LSTM bidirectional layers (PyTorch and ONNX only) please notice this operator is un-
rolled by the sequence length which may add large number of layers to the model for large sequence
lengths.

Deprecated APIs

• Profiler mode deprecation, Profiler will run it’s inherit mode automatically.

Page 9 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• resize_input model script command depraction, use resize instead.

• Har_path cli flag is deprecated.

• NMS arguments: clip_boxes and normalized_output are deprecated.

Dataflow Compiler v3.25.0 (October 2023)

General

• Tensorflow version was updated to 2.12.0 (CUDA 11.8, Cudnn 8.9).

• Hailo Dataflow Compiler now supports the newly-released Hailo-15M device

High-level and Documentation

• Interactive Mode on parser CLI: allows to retry failed parsing with suggested start/end nodes, or adding
auto-detected NMS post-process to model script

• analyze_noise() results will be accessed from get_params_statistics() only.

Profiler

• A new HTML report template is used by default.

• Supports optimization-only mode, to only display optimization-related data (saves compilation time).

Compiler

• Allocation algorithm improvements that result in higher FPS for most models.

Model Modifications

• Added resize model script command for applying resize layer on input or output tensor(s).

• input_conversion command for NV conversion (nv12, nv21, i420) expects only one returned layer when
converting to YUV and two conversion layers when converting to RGB.

• All layers that are added to the model using input_conversion, now show up on Netron and Visualizer.

• NMS post-process:

– Changed default value of engine in nms_postprocess command for YOLOv5.

– The value of nms_scores_th in the default NMS post-process config json was change from 0.01 to 0.3.

– When using nms post-process on CPU with default configuration the nms_iou_th is changed to 0.6.

Model Optimization

• Ability to run MO algorithms in reduced resolution, to decrease running time and RAM consumption.

• Reducing spatial dimensions of Global Average Pool Layers.

– Automatically performed on large tensors (preview).

– Can be configured manually using a model script command.

• Full Precision Optimization:

– Added full precision only argument to hailo optimize CLI command, allowing running just the full
precision optimizations on a model. Command example: hailo optimize model.har ­­
full­precision­only ­­model­script script.alls

– Defuse (split) Multi-head attention blocks to groups for easier compilation, using a model script com-
mand.

– Convolution layers are defused (split) automatically by input features if they are large enough, also
possible using a model script command.

Parser

• Added support for Softsign activation (PyTorch, Tensorflow, not supported in TFLite).

Page 10 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• Added support with ceil_mode=True in pooling layers (PyTorch and ONNX only).

• Added support for RNN and LSTM layers (PyTorch and ONNX only), please notice this operator is unrolled
by the sequence length which may add large number of layers to the model for large sequence lengths.

• Added support for height-width transpose (PyTorch and ONNX only).

• Added support for OneHot operator (preview level, PyTorch and ONNX only), limited to the last axis.

• Added support for Greater activation (PyTorch and ONNX only), limited to constant value only.

• Added support for Conv3D and Concat3D (PyTorch and ONNX only) - Preview, limited support - models
are assumed to be rank4 input and output.

Deprecated APIs

• Deprecation warning for resize_input model script command, please use resize instead.

• Profiler:

– ­­use­new­report flag was deprecated (since the new report is used by default)

– profile() return type will change to a single Python dict type in the near future

– Deprecation message for –mode CLI argument

– Deprecation message for profiling_mode argument of profile()

– hailo profiler accepts only HAR path as model_path (not an hn path)

Dataflow Compiler v3.24.0 (July 2023)

General

• Hailo Dataflow Compiler now supports the newly-released Hailo-15H device

Model Optimization

• The automatic 16-bit output layer feature is disabled

• System & GPU memory usage optimizations

Kernels and Activations

• 16-bit precision mode can be applied to specific Conv layers inside the model to increase their accuracy

Profiler

• Activation clipping values are showed in the activation histogram plot

• You can use the new profiler HTML design, by appending the ­­use­new­report flag to the CLI
command (preview; will be default starting 2023-10)

Parser

• Apply padding correction on Average Pooling layer without external padding

• Start/End Node Name suggestion for models with unsupported ops

• Output layer names order is determined by their order on the parser API

Full Precision Optimization

• Dense layers (fully-connected) input features defuse

– Automatically performed on large tensors

– Can be configured manually using a model script command

High-level and Documentation

• NMS auto detection:

– Detected NMS config saved to native HAR

Page 11 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

– NMS post-process command takes config from auto detection

– Get auto-detected NMS config using the get_detected_nms_config() API

– If a post-process json configuration files is used (on SSD, for example), thereg andcls layer names
can remain empty, and the auto-detect algorithm will locate them

• Added set_seed command for reproducing of quantization results, affects the seed of tensorFlow, numpy,
and python.random libraries (preview)

• New API - get_params_statistics()

• Apply sigmoid automatically whenever is needed:

– YOLOX - after the objectness and classes layers before the NMS

– YOLOv5 - between output convolution layers and the NMS

– SSD - between classes layers and the NMS

Compiler

• Improved Performance Mode algorithm

• Improved FPS on models that are compiled to Hailo-15H

Command Line Tools

• hailo optimize using RGB images instead of random data when using –use-random-calib-set

• hailo analyze-noise now saves its results inside the model’s HAR

Deprecated APIs

• Deprecation warning for performance_param(optimization_level=max), please use perfor-
mance_param(compiler_optimization_level) instead

• Deprecation warning on the –analysis-data argument on hailo profiler

• Deprecated get_tf_graph() API was removed, please use infer()

Known issues

• Refer to Hailo AI SW Suite: Known Issues page for an updated list of issues

Dataflow Compiler v3.23.0 (April 2023)

Compiler

• Introducing Performance Mode, that gradually increases the utilization to achieve the best FPS (preview)

• The compiler has been optimized for better stability and performance

Model Optimization

• Supporting Quantization-Aware-Training using the set_keras_model() API. See the Quantization-
Aware-Training Tutorial for more details

• Added support for 16-bit precision on full networks, in case all layers are supported (preview)

• Optimization levels are changed to be between 0 (no optimization) and 4 (best plausible optimization), as
opposed to 0-3. Their current description is found in the model_optimization_flavor API guide

• The default optimization level is now 2 for GPU and 1024 images, 1 for GPU and less than 1024 images,
and 0 for CPU only

• Bias Correction algorithm is used as default (optimization_level=1)

• When importing Hailo python libraries, TF memory allocation mechanism is set to “memory growth” by
default, to decrease memory consumption. One can override this with an environment variable

• Improved the FineTune algorithm for models with multiple output nodes

Page 12 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/developer-zone/documentation/hailo-sw-suite/latest/?sp_referrer=suite/known_issues.html

Hailo Dataflow Compiler User Guide

• 16-bit output layer is enabled automatically when supported, for small output tensors

• When optimization fails, a better error message is displayed, referring to the failing algorithm

Kernels and Activations

• Transformer building block Multi head Attention is now supported (preview)

• Increased support for Conv&Add layers

Profiler

• The HTML profiler now displays a quick version of the layer analysis tool (Accuracy tab) automatically

• Added –stream-fps flag to hailo profiler, to be used with single-context models, to evaluate the perfor-
mance using an FPS which is lower than the network’s FPS

• Added –collect-runtime-data flag to hailo profiler, to automatically infer using hailortcli and display runtime
data in the report

Emulator

• Added support for emulating YOLOv5 NMS with engine=cpu, as well as for SSD

• Added emulation support for RGBX, NV12, NV21 and i420

Parser

• nms_postprocess command supports SSD post-processing also on CPU using the ‘engine’ flag (preview)

• Automatic anchors extraction for YOLOv5-type NMS models, using a message is displayed during parsing

• Added support for on-chip i420->YUV conversion, using an input_conversion command

• Added support for Biased Delta activation on TFLite, that is implemented using ABS->SIGN->MUL

• Added support for SpaceToDepth kernel that is used on YOLOP

• Added support for Spatial Squeeze operator on TFLite

• Added support for new HardSwish structure in ONNX parser

• Added Global MaxPool operator in ONNX parser

• Fixed a bug in the HardSigmoid implementation

• Added Hailo-ONNX support for models with Shape connections around the HailoOp

• Added Hailo-ONNX support for external inputs to the post-processing section

• Added an option to disable hailo-onnx runtime model build, when it hinders model parsing

• Softmax and Argmax can be added to the model using the logits_layer model script command

• Whenever NMS is being added (using a nms_postprocess command), Sigmoid is now added automatically

• Added hybrid conversion commands on the input_conversion section: yuy2_to_rgb, nv12_to_rgb, nv21_to_rgb,
i420_to_rgb

High-level and Documentation

• Log level can be set using the LOGLEVEL environment variable (0 [default] to 3)

• hailo visualizer shows layers added using model script commands that were folded

• hailo visualizer shows input layers conversion type

• Tutorials are now using runner.infer API instead of runner.get_tf_graph

• Layer Analysis Tool Tutorial has been updated to demonstrate how to increase accuracy

• Model Optimization Tutorial now uses YOLOv5 NMS with engine=cpu, and also a bbox visualization code

• Added description of which optimization algorithms are activated with each optimization level

• Removed the Multiple Models Tutorial. The Join API is still supported

Page 13 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Command Line Tools

• hailo analyze command removed, please use hailo analyze-noise instead

• New argument –analyze-mode added to hailo analyze-noise

• New argument –disable-rt-metadata-extraction added to hailo parser onnx

• New argument –version is added to hailo

Deprecated APIs

• Deprecation warning for get_tf_graph(), please use infer()

• optimize() is not allowed under QUANTIZED_MODEL

• Added analyze_mode to argument analyze_noise()

• Added disable_rt_metadata_extraction argument to translate_onnx_model()

• Deprecation warning for quantization_params and compilation_params arguments from trans­
late_onnx_model() and translate_tf_model(), please use model script commands
quantization_param and compilation_param instead

• The following ClientRunner APIs are now deprecated: get_results_by_layer, up-
date_params_layer_bias, profile_hn_model, get_mapped_graph, get_params_after_bn, set_original_model,
apply_model_modification_commands

• Removed deprecated argument ew_add_policy from translate_onnx_model() and trans­
late_tf_model()

• Removed dead_channels_removal_from_runner API

• Deprecated scores_scale_factor argument to SSD post-process JSON file, use bbox_dimensions_scale_factor
instead

• Deprecation warning for context_switch_param command parameters of type: goal_network_X

Known issues

• Some Transformer models are at risk for having a runtime bug when inferring with batch_size > 1,
when multi-context allocation is used a workaround is to use the max_utilization parameter of con-
text_switch_param command to change the failing context partition

• In some cases, using the Fine Tune algorithm when the whole network is quantized to 16-bit might cause
a degradation

Dataflow Compiler v3.22.1 (February 2023)

Parser

• Fixed an issue where a model script had to be provided explicitly to hailo compiler when an NMS command
was used

• Added support for Global Maxpool operator in ONNX parser

• Fixed a parsing issue in Hardswish activation

• Fixed an issue that has prevented YOLOv8 from parsing

Compiler

• Fixed prints to screen during compilation, regarding single/multi context flow and resources utilization

• Removed the warning message of using on-chip NMS with multi context allocation, since the new version
of HailoRT fixes the issue

Page 14 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Dataflow Compiler v3.22.0 (January 2023)

Package Updates

• Added support for Ubuntu 22.04, Python 3.9, and Python 3.10

• Ubuntu 18.04, Python 3.6 and Python 3.7 are no longer supported

• Updated Tensorflow requirement to version 2.92

• Updated ONNX requirement to version 1.12.0

• Updated ONNXRuntime requirement to version 1.12.0

Profiler

• Introducing Accuracy Tab on the HTML Profiler, to be used as a tool to analyze and improve accuracy

• Profiler in post-placement mode doesn’t require .hef file, when working on a compiled .har file

• Profiler will apply model modifications on pre_placement mode, if a model script was supplied

• profile() API will not update the runner state, even if it compiles for the profiling process

• Bug fixes

Model Optimization

• ClientRunner now has a new SdkFPOptimized state (see runner states diagram), for assessing model
accuracy before quantization

• Updated the Model Optimization workflow section with simple and advanced optimization flows

• Updated the Model Optimization Tutorial with step-by-step instructions for validating accuracy through
the optimization and compilation phases

• Updated the Layer Analysis Tool tutorial to utilize the new HTML profiler Accuracy tab

Emulator

• Added Emulator support for YUY2 color conversions, using ‘emulator_support=True’ flag on the in-
put_conversion command

Kernels and Activations

• Added support for on-chip NV12->YUV, NV21->YUV and YUV->BGR format conversions, using an in-
put_conversion

• Further increased support for Resize Bilinear layers

• Nearest Neighbor Resize now supports downsampling

• Added support for ReduceSumSquare operator

• Add support for EfficientGCN pooling block

Parser

• nms_postprocess command now supports ‘engine’ flag, that instructs HailoRT to complete YOLOv5 NMS
post-processing on the host platform (preview)

• Enhanced the suggestion for end-node names

• Added support for Less operator in both ONNX and Tensorflow parsers

• Add support for dual broadcast in element-wise mult (Hx1xC * 1xWxC -> HxWxC)

• Added support for multiplication by 0 in all frameworks (x*0, x*0+b, (x+b)*0)

• Added support for depthwise with depth multiplier as group convolution in TFLite

• Add support for ADD_N from TFLite models

Compiler

Page 15 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• Optimized the compiler for better stability and performance

• Bug fixes

Known Bugs

• On this version, on-chip YOLOv5 NMS needs to be compiled using the legacy fps command.

API

• nms_postprocess model script command now uses relative paths relative to the alls script location. In
addition, when working with a HAR file that has model script inside, it uses the json from within the HAR

• On nms_postprocess model script command, changed the ‘yolo’ meta_arch to be ‘yolov5’

• Layer Analysis Tool now exports its data to a json file, that could be used with the HTML profiler to unlock
the new Accuracy tab

• ClientRunner APIs

– New

* analyze_noise

* optimize_full_precision

– Argument changes

* New: analysis_data in profile and profile_hn_model

* Deprecation warning: fps flag in all APIs that compile (profile_hn_model, get_tf_graph)

* Deprecation warning: ew_add_policy in translate_onnx_model, translate_tf_model

* Deprecation warning: apply_model_modifications

* Removed: model_script_filename in load_model_script

* Removed: is_frozen, start_node_name, nn_framework in translate_tf_model

* Removed: start_node_name, net_input_shape, onnx_path in translate_onnx_model

– Removed

* quantize

* equalize_params

* get_hw_representation

* revert_state

– Deprecation warning

* get_results_by_layer

* translate_params

* update_params_layer_bias

* profile_hn_model

* get_mapped_graph

* get_params_after_bn

* set_original_model

* apply_model_modification_commands

• High level APIs

– add_nms_postprocess (not using a model script command) - removed

– dead_channels_removal_from_runner - deprecation warning

• CLI tools

Page 16 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

– analyze was renamed to analyze­noise

* –data_path renamed to –data-path

* –eval-num renamed to –data-count

* –calib_path, –alls-path, –quant-mode, –layers, –inverse, –ref-target, –test-target, –analyze-mode
removed

* old flags exist under analyze command

– compiler

* –alls renamed to –model-script

* –auto-alls-path renamed to –auto-model-script

– har

* revert removed

– parser

* ckpt, tf2 removed (just use hailo parser tf FILE)

* –force-pb and –force-ckpt removed from parser tf

– profiler

* –fps removed

* –alls renamed to –model-script

* –analysis-data added

Dataflow Compiler v3.20.1 (November 2022)

Parser

• Added support for custom TFLite operators that implement a biased delta activation

• Added support for rank-2 HardSwish activation

• Optimized HardSwish and Gelu implementation

• Added support for the self operators add(x,x), concat(x,x), and mul(x,x) in the TF and ONNX parsers

• Pinned jsonref package to version 0.3.0 to fix installation error

Dataflow Compiler v3.20.0 (October 2022)

Model Optimization

• FPS is improved for large models by Quantization to 4-bit for 20% of the model weights is enabled by
default on large networks to improve FPS

Kernels and Activations

• Added on-chip support for RGBX->RGB conversion using input conversion command

• Added support for ONNX operator InstanceNormalization

• Added support for L2 Normalization layer on TensorFlow

Compiler

• Optimized the performance of compiled models

Parser

• Added a recommendation to use onnxsimplifier when parsing fails

Page 17 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• Added a recommendation to use TFLite parser if TF2 parsing fails (see conversion guide, on 4.2.5)

• TensorFlow parser detects model type automatically

High Level

• Refactor logger

– Cleaned info and warning messages

– Log files are duplicated into activated_virtualenv/etc/hailo/

– Log files could be disabled by an environment variable

• HTML Profiler report includes model optimization information: compression and optimization levels,
model modifications, weight and activation value ranges

• Dataflow Compiler is tested on Windows 10 with WSL2 running Ubuntu 20.04

API

• Compiler automatically separates different connected components to multiple network groups

– Mostly relevant for joined networks with join_action=JoinAction.NONE

– HailoRT API can be used to activate/deactivate each network group, although it is recommended to
use the Scheduler API because it automatically switches between network groups (and .hef files)

– For more information refer to network_group model script command

• ClientRunner.compile() API is introduced (planned to replace runner.get_hw_representation)
(preview)

• Updated platform_param model script command to optimize compilation for low PCIe bandwidth hosts

• Model script command for adding NMS on chip is simplified (preview)

• Deprecation warning for the legacy –fps argument, use performance_param model script command in-
stead

• Removed the already-deprecated APIs

– integrated_preprocess and ckpt_path arguments from ClientRunner methods

– Removed har-modifier CLI, and the following related methods: add_nms_postprocess_from_hn,
add_nms_postprocess_from_har, dead_channels_removal_from_har, trans-
pose_hn_height_width_from_hn, transpose_hn_height_width_from_har, add_yuv_to_rgb_layers,
add_yuv_to_rgb_layers_from_har, add_resize_input_layers, add_resize_input_layers_from_har

– npz-csv (use params-csv instead)

• As the parser detects Tensorflow1/2/TFLite automatically, the API for specifying the framework is depre-
cated

• The argument onnx_path of ClientRunner.translate_onnx_model was renamed to model, and also supports
‘bytes’ format

• ClientRunner.load_model_script can receive either a file object or a string

Note: Ubuntu 18.04 will be deprecated in Hailo Dataflow Compiler future version

Note: Python 3.6 will be deprecated in Hailo Dataflow Compiler future version

Page 18 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

3. Dataflow Compiler Installation

Note: This section describes the installation of the Dataflow Compiler only. For a complete description of the instal-
lation of Hailo Suite, which contains all Hailo SW products, please refer to the Hailo AI SW Suite user guide.

3.1. System Requirements

The Hailo Dataflow Compiler requires the following minimum hardware and software configuration:

1. Ubuntu 20.04/22.04, 64-bit (supported also on Windows, under WSL2)

2. 16+ GB RAM (32+ GB recommended)

3. Python 3.8/3.9/3.10, including pip and virtualenv

4. python3.X­dev and python3.X­distutils (according to the Python version), python3­tk,
graphviz, andlibgraphviz­dev packages. Use the commandsudo apt­get install PACK­
AGE for installation.

The following additional requirements are needed for GPU based hardware emulation:

1. Nvidia’s Pascal/Turing/Ampere GPU architecture (such as Titan X Pascal, GTX 1080 Ti, RTX 2080 Ti, or RTX A4000)

2. GPU driver version 525

3. CUDA 11.8

4. CUDNN 8.9

Note: The Dataflow Compiler installs and runs Tensorflow, however when Tensorflow is installed from PyPi and runs
on the CPU, it will also require AVX instruction support. Therefore, it is recommended to use a CPU that supports AVX
instructions. Another option is to compile Tensorflow from sources without AVX.

Warning: These requirements are for the Dataflow Compiler, which is used to build models. Running inference
using HailoRT works on smaller systems as well. In order to run inference and demos on a Hailo device, the latest
HailoRT needs to be installed as well. See HailoRT’s user guide for more details.

3.2. Installing / Upgrading Hailo Dataflow Compiler

Warning: This installation requires an internet connection (or a local pip server) in order to download Python
packages.

Note: If you wish to upgrade both Hailo Dataflow Compiler and HailoRT which are installed in the same virtualenv:
update HailoRT first, and then the Dataflow Compiler using the following instructions.

Hailo Dataflow Compiler’s Wheel file (.whl) can be downloaded from Hailo’s Developer Zone.

For a clean installation 1. Create a virtualenv:

virtualenv <VENV_NAME>

Page 19 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/developer-zone/sw-downloads/
https://hailo.ai/developer-zone/documentation/hailort/latest/
https://hailo.ai/developer-zone/sw-downloads/

Hailo Dataflow Compiler User Guide

2. Enter the virtualenv:

. <VENV_NAME>/bin/activate

3. When inside the virtualenv, use (for 64-bit linux):

pip install <hailo_dataflow_compiler­X.XX.X­py3­none­linux_x86_64.whl>

4. Perform one of the options:

If you already have a previous version (v3.15.0 or newer), enter the virtualenv, and install using the line above. The
old version will be updated automatically.

If you already have further older versions (<=3.14.0), you have to uninstall it manually from within the existing vir-
tualenv:

pip uninstall ­y hailo_sdk_common hailo_sdk_client hailo_sdk_server hailo_model_
↪→optimization

Install the new package with pip using the method above (the package names were changed from v3.14.0 to v3.15.0).

After installation / upgrade, it is recommended to view Hailo’s CLI tool options with:

hailo ­h

Note: You can validate the success of the install/update to latest Hailo packages, by runningpip freeze | grep
hailo.

Page 20 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4. Tutorials

The tutorials below go through the model build and inference steps. They are also available as Jupyter notebook files
in the directory VENV/lib/python…/site-packages/tutorials.

It’s recommended to use the command hailo tutorial (when inside the virtualenv) to open a Jupyter server
that contains the tutorials.

4.1. Dataflow Compiler Tutorials Introduction

The tutorials cover the Hailo Dataflow Compiler basic use-cases:

Model Compilation:

It is recommended to start with the Hailo Dataflow Compiler Overview / Model build process
section of the user guide.

The Hailo compilation process consists of three steps:

1. Converting a Tensorflow or ONNX neural-network graph into a Hailo-compatible representation.

2. Quantization of a full precision neural network model into an 8-bit model.

3. Compiling the network to binary files (HEF), for running on the Hailo device.

Inference:

1. Blocking inference with the HW-compatible model.

2. Streaming inference with the HW-compatible model.

3. Inference inside a Tensorflow environment.

These use-cases were chosen to show an end-to-end flow, beginning with a Tensorflow / ONNX model and ending
with a hardware deployed model.

Throughout this guide the Resnet-v1-18 neural network will be used to demonstrate the capabilities of the Dataflow
Compiler. The neural network is defined using Tensorflow checkpoint.

4.1.1. Usage

The HTML and PDF versions are for viewing-only. The best way to use the tutorials is to run them as Jupyter notebooks:

1. The Dataflow Compiler should be installed, either as a standalone Python package, or as part of the Hailo SW
Suite.

2. Activate the Dataflow Compiler virtual environment using source <virtualenv_path>

1. When using the Suite docker, the virtualenv is activated automatically.

3. The tutorial notebooks are located in: VENV/lib/python.../site­packages/
hailo_tutorials.

4. Running the command hailo tutorial will open a Jupyter server that allows viewing the tutorials locally
by using the link given at the output of the command.

5. Remote viewing from a machine different then the one used to run the Jupyter server is also possible by running
hailo tutorial ­­ip=0.0.0.0

Page 21 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.2. Parsing Tutorial

4.2.1. Hailo Parsing Example from Tensorflow CKPT to HAR

This tutorial will describe the steps for parsing Tensorflow checkpoints to the HAR format (Hailo Archive). HAR is a
tar.gz archive file that contains the representation of the graph structure and the weights that are deployed to the
Hailo hardware.

Note: Running this code in Jupyter notebook is recommended, see the Introduction tutorial for more details.

Note: This section demonstrates the Python APIs for Hailo Parser. You could also use the CLI: try hailo parser
{tf, onnx} ­­help. More details on Dataflow Compiler User Guide / Building Models / Profiler and other
command line tools.

[]: from hailo_sdk_client import ClientRunner

Choose the checkpoint files to be used throughout the tutorial:

[]: model_name = 'resnet_v1_18'
ckpt_path = '../models/resnet_v1_18.ckpt'

start_node = 'resnet_v1_18/conv1/Pad'
end_node = 'resnet_v1_18/predictions/Softmax'

chosen_hw_arch = 'hailo8'
For Hailo­15 devices, use 'hailo15h'
For Mini PCIe modules or Hailo­8R devices, use 'hailo8r'

The main API of the Dataflow Compiler that the user interacts with is the ClientRunner class (see the API Reference
section on the Dataflow Compiler user guide for more information).

First, initialize a ClientRunner and use the translate_tf_model method.

Arguments:

• model_path

• model_name to use

• start_node_names (list of str, optional): Name of the first node to parse.

• end_node_names (list of str, optional): List of nodes, that the parsing can stop after all of them are parsed.

For translating the model, supplying start and end node names might be crucial. Use the hailo tb tool or any
other model visualization tool to visualize the model and locate the nodes.

[]: runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_tf_model(ckpt_path, model_name, start_node_names=[start_
↪→node], end_node_names=[end_node])

4.2.2. Hailo Archive

Hailo Archive is a tar.gz archive file that captures the “state” of the model - the files and attributes used in a given stage
from parsing to compilation. Use the save_har method to save the runner’s state in any stage and load_har
method to load a saved state to an uninitialized runner.

The initial HAR file includes: - HN file, which is a JSON-like representation of the graph structure that is deployed to
the Hailo hardware. - NPZ file, which includes the weights of the model.

Save the parsed model in a Hailo Archive file:

[]: hailo_model_har_name = f'{model_name}_hailo_model.har'
runner.save_har(hailo_model_har_name)

Page 22 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Visualize the graph with the visualizer tool:

[]: from IPython.display import SVG

!hailo visualizer {hailo_model_har_name} ­­no­browser
SVG('resnet_v1_18.svg')

4.2.3. Parsing Example from ONNX to HAR

Parsing of ONNX model to the HAR format is similar to parsing a Tensorflow model.

Choose the ONNX file to be used throughout the example:

[]: onnx_model_name = 'yolov3'
onnx_path = '../models/yolov3.onnx'

Initialize a ClientRunner and use the translate_onnx_model method.

Arguments:

• model_path

• model_name to use

• start_node_names (list of str, optional): Name of the first ONNX node to parse.

• end_node_names (list of str, optional): List of ONNX nodes, that the parsing can stop after all of them are
parsed.

• net_input_shapes (dict, optional): A dictionary describing the input shapes for each of the start nodes given in
start_node_names, where the keys are the names of the start nodes and the values are their corresponding
input shapes. Use only when the original model has dynamic input shapes (described with a wildcard denoting
each dynamic axis, e.g. [b, c, h, w]).

As a suggestion try translating the ONNX model without supplying the optional arguments.

[]: runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_onnx_model(onnx_path, onnx_model_name,

start_node_names=['input_0'],
end_node_names=['890', '825', '760'],
net_input_shapes={'input_0': [1, 3, 640, 640]})

4.2.4. Parsing Example from Tensorflow 2

Parsing the Tensorflow 2.x SavedModel format is similar to parsing Tensorflow 1.x checkpoints. The Parser identifies
the input format automatically.

The following example shows how to parse a Tensorflow 2 model. It uses a small sample model, which is unrelated
to the resnet_v1_18 checkpoint used above.

[]: model_name = 'dense_example'
model_path = '../models/dense_example_tf2/saved_model.pb'

runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_tf_model(model_path, model_name)

Page 23 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.2.5. Common ConversionMethods from Tensorflow to Tensorflow Lite

The following examples focus on Tensorflow’s TFLite converter support for various TF formats, showing how older
formats of TF can be converted to TFLite, which can then be used in Hailo’s parsing stage.

[]: import tensorflow as tf

Building a simple Keras model
def build_small_example_net():
inputs = tf.keras.Input(shape=(24, 24, 96), name=”img”)
x = tf.keras.layers.Conv2D(24, 1, name='conv1')(inputs)
x = tf.keras.layers.BatchNormalization(momentum=0.9, name='bn1')(x)
outputs = tf.keras.layers.ReLU(max_value=6.0, name='relu1')(x)
model = tf.keras.Model(inputs, outputs, name=”small_example_net”)
return model

Converting the Model to tflite
model = build_small_example_net()
model_name = 'small_example'
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.

]
tflite_model = converter.convert() # may cause warnings in jupyter notebook, don't�
↪→worry.
tflite_model_path = '../models/small_example.tflite'
with tf.io.gfile.GFile(tflite_model_path, 'wb') as f:
f.write(tflite_model)

Parsing the model to Hailo format
runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_tf_model(tflite_model_path, model_name)

[]: # Alternatively, convert an already saved SavedModel to tflite
model_path = '../models/dense_example_tf2/'
model_name = 'dense_example_tf2'
converter = tf.lite.TFLiteConverter.from_saved_model(model_path)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.

]
tflite_model = converter.convert() # may cause warnings in jupyter notebook, don't�
↪→worry.
tflite_model_path = '../models/dense_example_tf2.tflite'
with tf.io.gfile.GFile(tflite_model_path, 'wb') as f:
f.write(tflite_model)

Parsing the model to Hailo format
runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_tf_model(tflite_model_path, model_name)

[]: # Third option, convert h5 file to tflite.
model_path = '../models/ew_sub_v0.h5'
model_name = 'ew_sub_example'
model = tf.keras.models.load_model(model_path)
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.

(continues on next page)

Page 24 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

]
tflite_model = converter.convert()
tflite_model_path = '../models/ew_sub_example.tflite'
with tf.io.gfile.GFile(tflite_model_path, 'wb') as f:
f.write(tflite_model)

Parsing the model to Hailo format
runner = ClientRunner(hw_arch=chosen_hw_arch)
hn, npz = runner.translate_tf_model(tflite_model_path, model_name)

4.3. Model Optimization Tutorial

This tutorial describe the process of optimizing the user’s model. The input to this tutorial is a HAR file in Hailo Model
state (before optimization; with native weights) and the output will be a quantized HAR file with quantized weights.

Note: For full information about Optimization and Quantization, refer to theDataflow Compiler user guide
/ Model optimization section.

Requirements:

• Run this code in Jupyter notebook. See the Introduction tutorial for more details.

• The user should review the complete Parsing Tutorial (or created the HAR file in other way)

Recommendation:

• To obtain best performance run this code with a GPU machine. For full information see theDataflow Com­
piler user guide / Model optimization section.

Contents:

• Quick optimization tutorial

• In-depth optimization & evaluation tutorial

• Advanced Model Modifications tutorial

• Compression and Optimization levels

[]: # importing everything needed
from hailo_sdk_client import ClientRunner, InferenceContext

import json
import os

import matplotlib.patches as patches
import numpy as np
import tensorflow as tf
from IPython.display import SVG
from matplotlib import pyplot as plt
from PIL import Image

IMAGES_TO_VISUALIZE = 5

Page 25 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.3.1. Quick Optimization Tutorial

After the HAR file has been created (or called runner.translate_tf_model or runner.
translate_onnx_model), the next step is to go through the optimization process.

The basic optimization is performed just by callingrunner.optimize(calib_dataset) (or the CLIhailo
optimize), as described on the user guide on: Building Models / Model optimization / Model Optimization Work-
flow.

In order to learn how to deal with common pitfalls, image formats and accuracy, refer to the in-depth section.

[]: # First, we will prepare the calibration set. Resize the images to the correct size and�
↪→crop them.
from tensorflow.python.eager.context import eager_mode

def preproc(image, output_height=224, output_width=224, resize_side=256):
''' imagenet­standard: aspect­preserving resize to 256px smaller­side, then�

↪→central­crop to 224px'''
with eager_mode():
h, w = image.shape[0], image.shape[1]
scale = tf.cond(tf.less(h, w), lambda: resize_side / h, lambda: resize_side / w)
resized_image = tf.compat.v1.image.resize_bilinear(tf.expand_dims(image, 0),�

↪→[int(h*scale), int(w*scale)])
cropped_image = tf.compat.v1.image.resize_with_crop_or_pad(resized_image,�

↪→output_height, output_width)

return tf.squeeze(cropped_image)

images_path = '../data'
images_list = [img_name for img_name in os.listdir(images_path) if

os.path.splitext(img_name)[1] == '.jpg']

calib_dataset = np.zeros((len(images_list), 224, 224, 3))
for idx, img_name in enumerate(sorted(images_list)):
img = np.array(Image.open(os.path.join(images_path, img_name)))
img_preproc = preproc(img)
calib_dataset[idx, :, :, :] = img_preproc.numpy()

np.save('calib_set.npy', calib_dataset)

[]: # Second, we will load our parsed HAR from the Parsing Tutorial

model_name = 'resnet_v1_18'
hailo_model_har_name = f'{model_name}_hailo_model.har'
assert os.path.isfile(hailo_model_har_name), 'Please provide valid path for HAR file'
runner = ClientRunner(har=hailo_model_har_name)
By default it uses the hw_arch that is saved on the HAR. For overriding, use the hw_
↪→arch flag.

[]: # Now we will create a model script, that tells the compiler to add a normalization on�
↪→the beginning
of the model (that is why we didn't normalize the calibration set;
Otherwise we would have to normalize it before using it)

Batch size is 8 by default
alls = 'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.
↪→375])\n'

Load the model script to ClientRunner so it will be considered on optimization
runner.load_model_script(alls)

(continues on next page)

Page 26 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

Call Optimize to perform the optimization process
runner.optimize(calib_dataset)

Save the result state to a Quantized HAR file
quantized_model_har_path = f'{model_name}_quantized_model.har'
runner.save_har(quantized_model_har_path)

That concludes the quick tutorial.

4.3.2. In-Depth Optimization Tutorial

The advanced optimization process (see the diagram in the user guide on: Building Models / Model optimization /
Model Optimization Workflow), is comprised of the following steps:

1. Test the parsed Native model before any changes are made (still on floating point precision), check to see
that the pre and post processing code works well with the start and end nodes provides. The Native model will
match the results of the original model, in between the start_node_names and the end_node_names provided
by the user during the Parsing stage.

2. Optional: Apply Model Modifications (like input Normalization layer, YUY2 to RGB conversion, changing output
activations and others), using a model script.

3. Test the FP Optimized model (the model after floating point operations and modifications) to see that
required results have been achieved.

• Note: Remember to update the pre and post processing code to match the changes in the model. For
example, if normalization has been added to the model, remove the normalization code from the pre-
processing code, and feed un-normalized images to the model. If softmax has been added onto the
outputs, remove the softmax from the post-processing code. Etc.

4. Now perform Optimization to the model, using a calibration set that has been prepared. The result is a
Quantized model, that has some degradation compared to the pre-quantized model.

• Note: The format of calibration set is the same as was used as inputs for the modified model. For example,
if a normalization layer has been added to the model, the calibration set should not be normalized. If this
layer has not been added yet, pre-process and normalize the images.

5. Test the quantized model using the same already-validated code for the pre and post processing.

• If there is a degradation, this is not because of input/output formats, since they were already verified with
the pre-quantized model.

6. To increase the accuracy of the quantized model, can optimize again using a model script to affect the
optimization process.

• Note: The most basic method is to raise the optimization_level, an example model script command is
model_optimization_flavor(optimization_level=4). The advanced method is to
use the Layer Analysis Tool, presented on the next tutorial.

• Note: If the accuracy is good, then consider increasing the performance by using 4-bit
weights. This is done using compression_level, an example model script command is
model_optimization_flavor(compression_level=2).

7. During the next tutorials, compile then run on the on the actual device. Expect the input and output values to
be similar to the quantized model’s.

The testing (whether on Native, Modified or Quantized model) is performed using our Emulator feature, that will
be described in this tutorial.

We will now work through the steps described above.

Page 27 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Preliminary step: Create testing environment

Hailo offers anEmulator for testing the model in its different states. The emulator is implemented as a Tensorflow
graph, and its results are the return value of runner.infer(context, network_input). To get infer-
ence results, run this API within the context manager runner.infer_context(inference_context)
where the inference context is one of: [InferenceContext.SDK_NATIVE, InferenceContext.
SDK_FP_OPTIMIZED, InferenceContext.SDK_QUANTIZED]: - InferenceContext.
SDK_NATIVE: Testing method of Step 1 on the optimization process steps (Native model). Runs the model as
is without any changes. Use it to make sure the model has been converted properly into Hailo’s internal representa-
tion. Should yield exact results as the original model. - InferenceContext.SDK_FP_OPTIMIZED: Testing
method of Step 3 on the optimization process steps (Modified model). The modified model represents the Hailo
model prior to quantization, and is the result of performing model modifications (e.g. normalizing/resizing inputs)
and full precision optimizations (e.g. tiled squeeze & excite, equalization). As a result, inference results may vary
slightly from the native results. - InferenceContext.SDK_QUANTIZED: Testing method of Step 5 on the
optimization process steps (Quantized model). This inference context emulates the hardware implementation,
and is useful for measuring the overall accuracy and degradation of the quantized model. This measurement is done
against the original model over large datasets, prior to running inference on the actual Hailo device.

Preliminary Step: Create Pre and Post Processing Functions

[]: from tensorflow.python.eager.context import eager_mode

­­­
Pre processing (prepare the input images)
­­­
def preproc(image, output_height=224, output_width=224, resize_side=256,�
↪→normalize=False):
''' imagenet­standard: aspect­preserving resize to 256px smaller­side, then�

↪→central­crop to 224px'''
with eager_mode():
h, w = image.shape[0], image.shape[1]
scale = tf.cond(tf.less(h, w), lambda: resize_side / h, lambda: resize_side / w)
resized_image = tf.compat.v1.image.resize_bilinear(tf.expand_dims(image, 0),�

↪→[int(h*scale), int(w*scale)])
cropped_image = tf.compat.v1.image.resize_with_crop_or_pad(resized_image,�

↪→output_height, output_width)

if normalize:
Default normalization parameters for ImageNet
cropped_image = (cropped_image ­ [123.675, 116.28, 103.53]) / [58.395, 57.12,�

↪→57.375]

return tf.squeeze(cropped_image)

­­­
Post processing (what to do with the model's outputs)
­­­
def _get_imagenet_labels(json_path='../data/imagenet_names.json'):
imagenet_names = json.load(open(json_path))
imagenet_names = [imagenet_names[str(i)] for i in range(1001)]
return imagenet_names[1:]

imagenet_labels = _get_imagenet_labels()

(continues on next page)

Page 28 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

def postproc(results):
labels = []
scores = []
for result in results:
top_ind = np.argmax(result)
cur_label = imagenet_labels[top_ind]
cur_score = 100*result[top_ind]
labels.append(cur_label)
scores.append(cur_score)

return scores, labels

­­­­­­­­­­­­­
Visualization
­­­­­­­­­­­­­
def mynorm(data):
return (data­np.min(data)) / (np.max(data)­np.min(data))

def visualize_results(
images,
first_scores, first_labels,
second_scores=None, second_labels=None,
first_title='Full Precision', second_title='Other'

):
Deal with input arguments
assert (second_scores is None and second_labels is None) or (second_scores is not�

↪→None and second_labels is not None), \
”second_scores and second_labels must both be supplied, or both not be supplied”

assert len(images) == len(first_scores) == len(first_labels), ”lengths of inputs�
↪→must be equal”

show_only_first = (second_scores is None)
if not show_only_first:
assert len(images) == len(second_scores) == len(second_labels), ”lengths of�

↪→inputs must be equal”

Display
for img_idx in range(len(images)):
plt.figure()
plt.imshow(mynorm(images[img_idx]))

if not show_only_first:
plt.title(f'{first_title}: top­1 class is {first_labels[img_idx]}. Confidence�

↪→is {first_scores[img_idx]:.2f}%,\n'
f'{second_title}: top­1 class is {second_labels[img_idx]}. Confidence is

↪→{second_scores[img_idx]:.2f}%')
else:
plt.title(
f'{first_title}: top­1 class is {first_labels[img_idx]}. Confidence is

↪→{first_scores[img_idx]:.2f}%'
)

Page 29 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Step 1: Test Native Model

Load the network to the ClientRunner from the saved Hailo Archive file:

[]: model_name = 'resnet_v1_18'
hailo_model_har_name = f'{model_name}_hailo_model.har'
assert os.path.isfile(hailo_model_har_name), 'Please provide valid path for HAR file'
runner = ClientRunner(har=hailo_model_har_name)
By default it uses the hw_arch that is saved on the HAR. For overriding, use the hw_
↪→arch flag.

Prepare the images to be fed to the model:

[]: images_path = '../data'
images_list = [img_name for img_name in os.listdir(images_path) if

os.path.splitext(img_name)[1] == '.jpg']

Create an un­normalized dataset for visualization
image_dataset = np.zeros((len(images_list), 224, 224, 3))
Create a normalized dataset to feed into the Native emulator
image_dataset_normalized = np.zeros((len(images_list), 224, 224, 3))
for idx, img_name in enumerate(sorted(images_list)):
img = np.array(Image.open(os.path.join(images_path, img_name)))
img_preproc = preproc(img)
image_dataset[idx, :, :, :] = img_preproc.numpy()
img_preproc_norm = preproc(img, normalize=True)
image_dataset_normalized[idx, :, :, :] = img_preproc_norm.numpy()

Now call the Native emulator:

[]: %matplotlib inline

Notice that we use the normalized images, because normalization is not in the model
with runner.infer_context(InferenceContext.SDK_NATIVE) as ctx:
native_res = runner.infer(ctx, image_dataset_normalized[:IMAGES_TO_VISUALIZE, :,�

↪→:, :])

native_scores, native_labels = postproc(native_res)
visualize_results(image_dataset[:IMAGES_TO_VISUALIZE, :, :, :], native_scores,�
↪→native_labels)

Steps 2,3: Apply Model Modifications, and Test Modified Model

The Model Script is a text file that includes model script commands, affecting the stages of the compiler.

In the next steps the following will be performed: - Create a model script for the Optimization process, that also in-
cludes the model modifications. - Load the model script (it wont be applied yet) - Call runner.optimize_full_precision()
to apply the model modifications (instead, we could call optimize() that also applies the model modifications) - Then
we could call the SDK_FP_OPTIMIZED emulation context

[]: model_script_lines = [
Add normalization layer with mean [123.675, 116.28, 103.53] and std [58.395, 57.12,

↪→ 57.375])
'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.

↪→375])\n'
For multiple input nodes:
{normalization_layer_name_1} = normalization([list of means per channel], [list�

↪→of stds per channel], {input_layer_name_1_from_hn})\n',
{normalization_layer_name_2} = normalization([list of means per channel], [list�

↪→of stds per channel], {input_layer_name_2_from_hn})\n',
...

(continues on next page)

Page 30 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

]

Load the model script to ClientRunner so it will be considered on optimization
runner.load_model_script(''.join(model_script_lines))
runner.optimize_full_precision()

[]: %matplotlib inline

Notice that we use the original images, because normalization is IN the model
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx:
modified_res = runner.infer(ctx, image_dataset[:IMAGES_TO_VISUALIZE, :, :, :])

modified_scores, modified_labels = postproc(modified_res)

visualize_results(
image_dataset[:IMAGES_TO_VISUALIZE, :, :, :],
native_scores, native_labels,
modified_scores, modified_labels,
second_title='FP Modified')

Step 4,5: Optimize theModel and Test its Accuracy

1. We will create a calibration dataset (will be the same as the input to the modified model)

2. Then we will call Optimize

3. Then we will test its accuracy vs. the modified model

[]: # The original images are being used, just as the input to the SDK_FP_OPTIMIZED emulator
calib_dataset = image_dataset

For calling Optimize, use the short version: runner.optimize(calib_dataset)
A more general approach is being used here that works also with multiple input nodes.
The calibration dataset could also be a dictionary with the format:
{input_layer_name_1_from_hn: layer_1_calib_dataset, input_layer_name_2_from_hn:�
↪→layer_2_calib_dataset}
hn_layers = runner.get_hn_dict()['layers']
print(”Input layers are: ”)
print([layer for layer in hn_layers if hn_layers[layer]['type'] == 'input_layer']) #�
↪→See available input layer names
calib_dataset_dict = {'resnet_v1_18/input_layer1': calib_dataset} # In our case�
↪→there is only one input layer
runner.optimize(calib_dataset_dict)

[]: %matplotlib inline

Notice that we use the original images, because normalization is in the model
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx:
quantized_res = runner.infer(ctx, image_dataset[:IMAGES_TO_VISUALIZE, :, :, :])

quantized_scores, quantized_labels = postproc(quantized_res)

visualize_results(
image_dataset[:IMAGES_TO_VISUALIZE, :, :, :],
modified_scores, modified_labels,
quantized_scores, quantized_labels,
first_title='FP Modified', second_title='Quantized')

Page 31 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

[]: # Let's save the runner's state to a Quantized HAR
quantized_model_har_path = f'{model_name}_quantized_model.har'
runner.save_har(quantized_model_har_path)

Step 6: How to Raise Accuracy

To increase the accuracy of the quantized model, optimize again using a model script to affect the optimization pro-
cess.

There are several tools that can be used.

• Verify that there is a GPU with at least 1024 images in the calibration set

• Raise the optimization_level value using the model_optimization_flavor command. If it fails on high GPU mem-
ory, try lowering the batch_size as described on the last example

• Decrease the compression_level value using the model_optimization_flavor command (default is 0, lowest op-
tion)

• Set the output layer(s) to use 16-bit accuracy using the command quantization_param(output_layer_name, pre-
cision_mode=a16_w16). Note that the DFC will set 16-bit output automatically for small enough outputs.

• Use the Layer Noise Analysis tools to find layers with low SNR, and affect their quantization using weight or
activation clipping (see the next tutorial)

• Experiment with the FineTune parameters (refer to the user guide for more details)

For more information refer the user guide in: Building Models / Model optimization / Model Optimization Workflow
/ Debugging accuracy.

This completes the in-depth optimization tutorial.

4.3.3. AdvancedModel Modifications Tutorial

Adding on-chip input format conversion throughmodel script commands

This block will apply model modification commands using a model script. A YUY2-> YUV-> RGB conversion will be
added.

Unlike the normalization layer, which could simulate with the SDK_FP_OPTIMIZED and SDK_QUANTIZED emulators,
not all format conversions are supported in the emulator (for more information see the Dataflow Compiler
user guide / Model optimization section). Every conversion that runs in the emulator affects the cali-
bration set, and the user should supply the set accordingly. For example, after adding YUV -> RGB format conversion
layer, the calibration set is expected to be in YUV format. However, for some conversions the user may choose to
skip the conversion in emulation and to use the original calibration set instead. For instance, in this tutorial we will
use YUY2 -> YUV layer without emulation because we want the emulator input and the calibration dataset to remain
in YUV format. The format conversion layer would be relevant only when running the compiled .hef file on device.

Note: The NV21 -> YUV conversion is not supported in emulation.

The steps are:

1) Initialize Client Runner

2) Load YUV dataset

3) Load model script with the relevant commands

4) Using the optimize() API, the commands are applied and the model is quantized

5) Usage:

• To create input conversion after a specific layer: yuv_to_rgb_layer = input_conversion(input_layer1, yuv_to_rgb)

Page 32 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV

Hailo Dataflow Compiler User Guide

• To include the conversion in the optimization process: yuv_to_rgb_layer = input_conversion(input_layer1,
yuv_to_rgb, emulator_support=True)

• To create input conversion after all input layers: net_scope1/yuv2rgb1, net_scope2/yuv2rgb2 = in-
put_conversion(yuv_to_rgb)

[]: # Let's load the original parsed model again
model_name = 'resnet_v1_18'
hailo_model_har_name = f'{model_name}_hailo_model.har'
assert os.path.isfile(hailo_model_har_name), 'Please provide valid path for HAR file'
runner = ClientRunner(har=hailo_model_har_name)

We are using a pre­made YUV calibration set
calib_dataset_yuv = np.load('../model_modifications/calib_dataset_yuv.npz')

Now we're adding yuy2_to_yuv conversion before the yuv_to_rgb and a normalization�
↪→layer.
The order of the layers is determined by the order of the commands in the model script:
First we add normalization to the original input layer ­> the input to the network is�
↪→now normalization1
Then we add yuv_to_rgb layer, so the order will be: yuv_to_rgb1­>normalization1­>
↪→original_network
Lastly, we add yuy2_to_yuv layer, so the order will be: yuy2_to_yuv1­>yuv_to_rgb1­>
↪→normalization1­>original_network
model_script_commands = [
'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.

↪→375])\n',
'yuv_to_rgb1 = input_conversion(yuv_to_rgb)\n',
'yuy2_to_yuv1 = input_conversion(input_layer1, yuy2_to_hailo_yuv)\n'

]
runner.load_model_script(''.join(model_script_commands))

Notice that we don't have to call runner.optimize_full_precision(), its only an�
↪→intermediate step
to be able to use SdkFPOptimize emulator before Optimization.
runner.optimize(calib_dataset_yuv['yuv_dataset'])

modified_model_har_name = f'{model_name}_modified.har'
runner.save_har(modified_model_har_name)
!hailo visualizer {modified_model_har_name} ­­no­browser
SVG('resnet_v1_18.svg')

Adding On-chip Input Resize ThroughModel Script Commands

This block will apply on-chip bilinear image resize at the beginning of the network through model script commands:

• Create a bigger (640x480) calibration set out of the Imagenet dataset

• Initialize Client Runner

• Load the new calibration set

• Load the model script with the resize command

• Using the optimize() API, the command is applied and the model is quantized

[]: images_path = '../data'
images_list = [img_name for img_name in os.listdir(images_path) if

os.path.splitext(img_name)[1] == '.jpg']

idx_to_visualize=None
images_list = images_list[:64]
calib_dataset_new = np.zeros((len(images_list), 480, 640, 3))

(continues on next page)

Page 33 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

for idx, img_name in enumerate(images_list):
img = Image.open(os.path.join(images_path, img_name))
resized_image = np.array(img.resize((640, 480), Image.Resampling.BILINEAR))
calib_dataset_new[idx, :, :, :] = resized_image
find an image that will be nice to display
if idx_to_visualize is None and img.size[0] != 640:
idx_to_visualize = idx
img_to_show = img

np.save('calib_set_480_640.npy', calib_dataset_new)
plt.imshow(img_to_show)
plt.title('Original image')
plt.show()
plt.imshow(np.array(calib_dataset_new[idx_to_visualize, :, :, :], np.uint8))
plt.title('Resized image')
plt.show()

[]: model_name = 'resnet_v1_18'
hailo_model_har_name = f'{model_name}_hailo_model.har'
assert os.path.isfile(hailo_model_har_name), 'Please provide valid path for HAR file'
runner = ClientRunner(har=hailo_model_har_name)

calib_dataset_large = np.load('calib_set_480_640.npy')

Add a bilinear resize from 480x640 to the network's input size ­ in this case, 224x224.
The order of the layers is determined by the order of the commands in the model script:
First we add normalization to the original input layer ­> the input to the network is�
↪→now normalization1
Then we add resize layer, so the order will be: resize_input1­>normalization1­>
↪→original_network
model_script_commands = [
'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.

↪→375])\n',
'resize_input1= resize(resize_shapes=[480,640])\n'

]

runner.load_model_script(''.join(model_script_commands))
calib_dataset_dict = {'resnet_v1_18/input_layer1': calib_dataset_large} # In our�
↪→case there is only one input layer
runner.optimize(calib_dataset_dict)

modified_model_har_name = f'{model_name}_resized.har'
runner.save_har(modified_model_har_name)
!hailo visualizer {modified_model_har_name} ­­no­browser
SVG('resnet_v1_18.svg')

Adding Non-Maximum Suppression (NMS) Layer ThroughModel Script Commands

This block will add an NMS layer at the end of the network through the model script command:
nms_postprocess. The following arguments can be used to:

• Config json: an external json file that allows the changing of the NMS parameters (can be skipped for the default
configuration).

• Meta architecture: which meta architecture to use (for example,yolov5,ssd, etc). In this example,yolov5
will be used.

• Engine: defines the inference device for running the nms: nn_core, cpu or auto (this example shows
cpu).

Page 34 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Usage:

• Initialize Client Runner

• Translate a YOLOv5 model

• Load the model script with the NMS command

• Use the optimize_full_precision() API to apply the command (Note that optimize() API can
also be used)

• Display inference result

[]: model_name = 'yolov5s'
onnx_path = f'../models/{model_name}.onnx'
assert os.path.isfile(onnx_path), 'Please provide valid path for ONNX file'

Initialize a new client runner
runner = ClientRunner(hw_arch='hailo8')
Any other hw_arch can be used as well.

Translate YOLO model from ONNX
runner.translate_onnx_model(onnx_path, end_node_names=['Conv_298', 'Conv_248',
↪→'Conv_198'])
Note: NMS will be detected automatically, with a message that contains:
­ 'original layer name': {'w': [WIDTHS], 'h': [HEIGHTS], 'stride': STRIDE,
↪→'encoded_layer': TRANSLATED_LAYER_NAME}
Use nms_postprocess(meta_arch=yolov5) to add the NMS.

Add model script with NMS layer at the network's output.
model_script_commands = [
'normalization1 = normalization([0.0, 0.0, 0.0], [255.0, 255.0, 255.0])\n',
'resize_input1= resize(resize_shapes=[480,640])\n',
'nms_postprocess(meta_arch=yolov5, engine=cpu, nms_scores_th=0.2, nms_iou_th=0.

↪→4)\n',
]
Note: Scores threshold of 0.0 means no filtering, 1.0 means maximal filtering. IoU�
↪→thresholds are opposite: 1.0 means filtering boxes only if they are equal, and 0.0�
↪→means filtering with minimal overlap.
runner.load_model_script(''.join(model_script_commands))

Apply model script changes
runner.optimize_full_precision()

Infer an image with the Hailo Emulator
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx:
nms_output = runner.infer(ctx, calib_dataset_new[:16, ...])

HEIGHT = 480
WIDTH = 640
For each image
for i in range(16):
found_any = False
min_score = None
max_score = None
Go over all classes
for class_index in range(nms_output.shape[1]):
score, box = nms_output[i][class_index, 4, :], nms_output[i][class_index, 0:4, :]
Go over all detections
for detection_idx in range(box.shape[1]):
cur_score = score[detection_idx]
Discard null detections (because the output tensor is always padded to MAX_

↪→DETECTIONS on the emulator interface.
Note: On HailoRT APIs (that are used on the Inference Tutorial, and with C++�

↪→APIs), the default is a list per class. For more information look for NMS on the�
↪→HailoRT user guide.

(continues on next page)

Page 35 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

if cur_score == 0:
continue

Plotting code
if not found_any:
found_any = True
fig, ax = plt.subplots()
ax.imshow(Image.fromarray(np.array(calib_dataset_new[i], np.uint8)))

if min_score is None or cur_score < min_score:
min_score = cur_score

if max_score is None or cur_score > max_score:
max_score = cur_score

y_min, x_min, = box[0, detection_idx] * HEIGHT, box[1, detection_idx] * WIDTH
y_max, x_max = box[2, detection_idx] * HEIGHT, box[3, detection_idx] * WIDTH
center, width, height = (x_min, y_min), x_max ­ x_min, y_max ­ y_min
draw the box on the input image
rect = patches.Rectangle(center, width, height, linewidth=1, edgecolor='r',�

↪→facecolor='none')
ax.add_patch(rect)

if found_any:
plt.title(f'Plot of high score boxes. Scores between {min_score:.2f} and {max_

↪→score:.2f}')
plt.show()

4.3.4. Advanced Optimization - Compression and Optimization Levels

For aggressive quantization (compress significant amount of weights to 4-bits), higher optimization level will be
needed to obtain good results. For quick iterations it is always recommended to start with the default setting of
the model optimizer (optimization_level=2, compression_level=1). However, when moving to production, we recom-
mended to work at the highest complexity level to achieve optimal accuracy. With regards to compression, users
should increase it when the overall throughput/latency of the model is not good enough. Note that increasing com-
pression would have negligible effect on power-consumption so the motivation to work with higher compression level
is mainly due to FPS considerations.

Here the compression level is set to 4 (which means ~80% of the weights will be quantized into 4-bits) using the
compression_level param in a model script and run the model optimization again. Using 4-bit weights might reduce
the model’s accuracy but will help to reduce the model’s memory footprint. In this example, it can be seen that
the confidence of some examples decreases after changing several layers to 4-bit weights, later the confidence will
improve after applying higher optimization_level.

[]: alls_lines = [
'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.

↪→375])\n',

Batch size is 8 by default; 2 was used for stability on PCs with low amount of RAM /�
↪→VRAM
'model_optimization_flavor(optimization_level=0, compression_level=4, batch_

↪→size=2)\n',

The following line is needed because resnet_v1_18 is a really small model, and the�
↪→compression_level is always reverted back to 0.'
To force using compression_level with small models, the following line should be�

↪→used (compression level=4 equals to 80% 4­bit):
'model_optimization_config(compression_params, auto_4bit_weights_ratio=0.8)\n'
The application of the compression could be seen by the [info] messages: ”Assigning�

↪→4bit weight to layer ..”
]
­­ Reduces weights memory by 80% !

(continues on next page)

Page 36 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

runner = ClientRunner(har=hailo_model_har_name)

runner.load_model_script(''.join(alls_lines))
runner.optimize(calib_dataset)

[]: %matplotlib inline

images = calib_dataset[:IMAGES_TO_VISUALIZE, :, :, :]
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx:
modified_res = runner.infer(ctx, images)

with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx:
quantized_res = runner.infer(ctx, images)

modified_scores, modified_labels = postproc(modified_res)
quantized_scores, quantized_labels = postproc(quantized_res)

visualize_results(
image_dataset[:IMAGES_TO_VISUALIZE, :, :, :],
modified_scores, modified_labels,
quantized_scores, quantized_labels,
first_title='FP Modified', second_title='Quantized')

Now, repeating the same process with higher optimization level (For full information see the Dataflow Com­
piler user guide / Model optimization section):

[]: %matplotlib inline

images = calib_dataset[:IMAGES_TO_VISUALIZE, :, :, :]

alls_lines = [
'normalization1 = normalization([123.675, 116.28, 103.53], [58.395, 57.12, 57.

↪→375])\n',

Batch size is 8 by default; 2 was used for stability on PCs with low amount of RAM /�
↪→VRAM
'model_optimization_flavor(optimization_level=2, compression_level=4, batch_

↪→size=2)\n',

The following line is needed because resnet_v1_18 is a really small model, and the�
↪→compression_level is always reverted back to 0.'
To force using compression_level with small models, the following line should be�

↪→used (compression level=4 equals to 80% 4­bit):
'model_optimization_config(compression_params, auto_4bit_weights_ratio=0.8)\n'
The application of the compression could be seen by the [info] messages: ”Assigning�

↪→4bit weight to layer ..”
]
­­ Reduces weights memory by 80% !

runner = ClientRunner(har=hailo_model_har_name)
runner.load_model_script(''.join(alls_lines))
runner.optimize(calib_dataset)

with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx:
modified_res = runner.infer(ctx, images)

with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx:
quantized_res = runner.infer(ctx, images)

modified_scores, modified_labels = postproc(modified_res)
quantized_scores_new, quantized_labels_new = postproc(quantized_res)

(continues on next page)

Page 37 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

visualize_results(
image_dataset[:IMAGES_TO_VISUALIZE, :, :, :],
modified_scores, modified_labels,
quantized_scores_new, quantized_labels_new,
first_title='FP Modified', second_title='Quantized'

)

[]: print(
f'Full precision predictions: {modified_labels}\n'
f'Quantized predictions (with optimization_level=2): {quantized_labels_new} '
f'({sum(np.array(modified_labels) == np.array(quantized_labels_new))}/

↪→{len(modified_labels)})\n'
f'Quantized predictions (with optimization_level=0): {quantized_labels} '
f'({sum(np.array(modified_labels) == np.array(quantized_labels))}/{len(modified_

↪→labels)})'
)

Finally, save the optimized model to a Hailo Archive file:

[]: runner.save_har(quantized_model_har_path)

4.4. Compilation Tutorial

4.4.1. Hailo Compilation Example from Hailo Archive QuantizedModel to HEF

This tutorial will describe how to describe the network to Hailo8 binary files (HEF).

Requirements:

• Run the codes below in Jupyter notebook, see the Introduction tutorial for more details.

• A quantized HAR file.

Note: This section demonstrates the Python APIs for Hailo Compiler. You could also use the CLI: try hailo com­
piler ­­help. More details on Dataflow Compiler User Guide / Building Models / Profiler and other command
line tools.

[]: from hailo_sdk_client import ClientRunner

Choose the quantized model Hailo Archive file to use throughout the example:

[]: model_name = 'resnet_v1_18'
quantized_model_har_path = f'{model_name}_quantized_model.har'

Load the network to the ClientRunner:

[]: runner = ClientRunner(har=quantized_model_har_path)
By default it uses the hw_arch that is saved on the HAR. It is not recommended to�
↪→change the hw_arch after Optimization.

Run compilation (This method can take a couple of minutes):

Note: The hailo compiler CLI tool can also be used.

[]: hef = runner.compile()

file_name = f'{model_name}.hef'
with open(file_name, 'wb') as f:
f.write(hef)

Page 38 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.4.2. Profiler tool

Run the profiler tool:

This command will pop-open the HTML report in the browser.

[]: har_path = f'{model_name}_compiled_model.har'
runner.save_har(har_path)
!hailo profiler {har_path}

Note:

The HTML profiler report could be augmented with runtime statistics, that are saved after the .hef ran on the device
using hailortcli.

For more information look under the section: Dataflow Compiler User Guide / Building Models / Profiler and other
command line tools / Running the Profiler.

4.5. Inference Tutorial

This tutorial describes the inference process.

Requirements:

• HailoRT installed on the same virtual environment, or as part of the Hailo SW Suite.

• Run this code in Jupyter notebook, see the Introduction tutorial for more details.

• Run the Compilation Tutorial before running this one.

Note: This section demonstrates PyHailoRT, which is a python library for communication with Hailo devices. For
evaluation purposes, refer to hailortcli run2 ­­help (or the alias hailo run2 ­­help). For more
details on the HailoRT User Guide / Command Line Tools.

4.5.1. Standalone Hardware Deployment

The standalone flow allows direct access to the HW, developing applications directly on top of Hailo core HW, using
HailoRT.

This way the Hailo hardware can be used without Tensorflow, and even without the Hailo Dataflow Compiler (after
the HEF is built).

A HEF is Hailo’s binary format for neural networks. The HEF file contains:

• Target HW configuration

• Weights

• Metadata for HailoRT (e.g. input/output scaling)

First create the desired target object.

Note: If a Hailo-15 device is being used, the tutorial and the resnet_v1_18.hef file should be copied to and
run on the device itself.

[]: from multiprocessing import Process

import numpy as np

from hailo_platform import (HEF, ConfigureParams, FormatType,�
↪→HailoSchedulingAlgorithm, HailoStreamInterface,

InferVStreams, InputVStreamParams, InputVStreams,�
↪→OutputVStreamParams, OutputVStreams,

VDevice)
(continues on next page)

Page 39 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/developer-zone/sw-downloads/

Hailo Dataflow Compiler User Guide

(continued from previous page)

Setting VDevice params to disable the HailoRT service feature
params = VDevice.create_params()
params.scheduling_algorithm = HailoSchedulingAlgorithm.NONE

The target can be used as a context manager (”with” statement) to ensure it's released�
↪→on time.
Here it's avoided for the sake of simplicity
target = VDevice(params=params)

Loading compiled HEFs to device:
model_name = 'resnet_v1_18'
hef_path = f'{model_name}.hef'
hef = HEF(hef_path)

Get the ”network groups” (connectivity groups, aka. ”different networks”)�
↪→information from the .hef
configure_params = ConfigureParams.create_from_hef(hef=hef,�
↪→interface=HailoStreamInterface.PCIe)
network_groups = target.configure(hef, configure_params)
network_group = network_groups[0]
network_group_params = network_group.create_params()

Create input and output virtual streams params
Quantized argument signifies whether or not the incoming data is already quantized.
Data is quantized by HailoRT if and only if quantized == False .
input_vstreams_params = InputVStreamParams.make(network_group, quantized=False,

format_type=FormatType.FLOAT32)
output_vstreams_params = OutputVStreamParams.make(network_group, quantized=True,

format_type=FormatType.UINT8)

Define dataset params
input_vstream_info = hef.get_input_vstream_infos()[0]
output_vstream_info = hef.get_output_vstream_infos()[0]
image_height, image_width, channels = input_vstream_info.shape
num_of_images = 10
low, high = 2, 20

Generate random dataset
dataset = np.random.randint(low, high, (num_of_images, image_height, image_width,�
↪→channels)).astype(np.float32)

Running Hardware Inference

Infer the model and then display the output shape:

[]: input_data = {input_vstream_info.name: dataset}

with InferVStreams(network_group, input_vstreams_params, output_vstreams_params)�
↪→as infer_pipeline:
with network_group.activate(network_group_params):
infer_results = infer_pipeline.infer(input_data)
The result output tensor is infer_results[output_vstream_info.name]
print(f'Stream output shape is {infer_results[output_vstream_info.name].shape}

↪→')

Page 40 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.5.2. Streaming Inference

This section shows how to run streaming inference using multiple processes in Python.

Infer will not be used and instead a send and receive model will be employed. The send function and the receive
function will run in different processes.

Define the send and receive functions:

[]: def send(configured_network, num_frames):
vstreams_params = InputVStreamParams.make(configured_network)
with InputVStreams(configured_network, vstreams_params) as vstreams:
configured_network.wait_for_activation(1000)
vstream_to_buffer = {vstream: np.ndarray([1] + list(vstream.shape),�

↪→dtype=vstream.dtype) for vstream in
vstreams}

for _ in range(num_frames):
for vstream, buff in vstream_to_buffer.items():
vstream.send(buff)

def recv(configured_network, num_frames):
vstreams_params = OutputVStreamParams.make(configured_network)
configured_network.wait_for_activation(1000)
with OutputVStreams(configured_network, vstreams_params) as vstreams:
for _ in range(num_frames):
for vstream in vstreams:
data = vstream.recv()

Define the amount of images to stream and processes, then recreate the target and run the processes:

[]: # Define the amount of frames to stream
num_of_frames = 1000

Start the streaming inference
send_process = Process(target=send, args=(network_group, num_of_frames))
recv_process = Process(target=recv, args=(network_group, num_of_frames))
recv_process.start()
send_process.start()
print(f'Starting streaming (hef=\'{model_name}\', num_of_frames={num_of_frames})')
with network_group.activate(network_group_params):
send_process.join()
recv_process.join()

Clean pcie target
target.release()
print('Done')

4.5.3. DFC Inference in Tensorflow Environment

Note: This section is not yet supported on the Hailo-15, as it requires the Dataflow Compiler to be installed on the
device.

The runner.infer() method that was used for emulation in the model optimization tutorial can also be used
for running inference on the Hailo device inside the infer_context environment. Before calling this function
with hardware context, please make sure a HEF file is loaded to a runner, by one of the options: calling runner.
compile(), loading a complied HAR usingrunner.load_har(), or setting the HEF attributerunner.hef.

First, create the runner and load a compiled HAR:

Page 41 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

[]: from hailo_sdk_client import ClientRunner

compiled_model_har_path = f'{model_name}_compiled_model.har'
runner = ClientRunner(hw_arch='hailo8', har=compiled_model_har_path)
For Mini PCIe modules or Hailo­8R devices, use hw_arch='hailo8r'

Calling runner.infer() within inference HW context to run on the Hailo device (InferenceContext.
SDK_HAILO_HW):

[]: import numpy as np

from hailo_platform import HEF
from hailo_sdk_client import InferenceContext

model_name = 'resnet_v1_18'
hef_path = f'{model_name}.hef'
hef = HEF(hef_path)
input_vstream_info = hef.get_input_vstream_infos()[0]
image_height, image_width, channels = input_vstream_info.shape
num_of_images = 10
low, high = 2, 20

with runner.infer_context(InferenceContext.SDK_HAILO_HW) as hw_ctx:
Running hardware inference:
for i in range(10):
dataset = np.random.randint(low, high, (num_of_images, image_height, image_

↪→width, channels)).astype(np.uint8)
results = runner.infer(hw_ctx, dataset)

4.5.4. Profiler with Runtime Data

This will demonstrate the usage of the HTML profiler with runtime data:

Note: On the Hailo-15 device:

1. The hailortcli run2 command should be run on the device itself

2. The created json file should be copied to the Dataflow Compiler environment

3. The hailo profiler command should be used

[]: model_name = 'resnet_v1_18'
hef_path = f'{model_name}.hef'
compiled_har_path = f'{model_name}_compiled_model.har'
runtime_data_path = f'runtime_data_{model_name}.json'

Run hailortcli (can use `hailo` instead) to run the .hef on the device, and save�
↪→runtime statistics to runtime_data.json
!hailortcli run2 ­m raw measure­fw­actions ­­output­path {runtime_data_path} set­
↪→net {hef_path}
!hailo profiler {compiled_har_path} ­­runtime­data {runtime_data_path} ­­out­path�
↪→runtime_profiler.html

Instead, this command could be used: hailo profiler {compiled_har_path} ­­collect­
↪→runtime­data ­­out­path runtime_profiler.html

Page 42 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Notes on the Profiler with runtime data

resnet_v1_18 is a small network, which fits in a single device without context-switch (it is called “single context”). Its
FPS and Latency are always displayed.

The ­­runtime­data flag is useful with big models, where the FPS and latency cannot be calculated on compile
time. With runtime data, the profiler displays the load, config and runtime of the contexts, the fps and latency for
multiple batch sizes.

The runtime FPS is also displayed on the hailortcli output.

4.6. Accuracy Analysis Tool Tutorial

This is an advanced tutorial, if the accuracy results obtained were satisfactory it can be omitted. Before using it, make
sure that your native (pre-quantization) results are satisfying. For more details refer to Debugging Accuracy
section on the Dataflow Compiler User Guide.

This tutorial will serve as a guide for how model quantization analysis breaks down the quantization noise per layer.
The tutorial is intended to guide the user in using Hailo analyze noise tool, by using it to analyze the classification
model MobileNet-v3-Large-Minimalistic.

The flow is mainly comprised of:

• Paths definitions: Defining the paths to the model and data for analysis.

• Preparing the model: Initial Parse and Optimize of the model.

• Accuracy analysis: This step is the heart of the tool, and computes the quantization noise of each layer output,
when the given layer is the only quantized layer, while the rest are kept in full precision. This highlights the
quantization sensitivity of the model to that specific layer noise.

• Visualizing the results: Walk through the results of the accuracy analysis and explain the different graphs and
information.

• Re-optimizing the model: After debugging the noise we repeat the optimization process to improve the results.

Requirements:

• Run this code in Jupyter notebook, see the Introduction tutorial for more details.

• Verify that you’ve completed the Parsing tutorial and the Model Optimization tutorial or generated analysis
data in another way.

[]: from hailo_sdk_client import ClientRunner

import os

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

Page 43 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.6.1. Input Definitions

• Model path: path to the model to be used in this tutorial

• data_path: path to preprocessed .npy image files for optimization and analysis

[]: model_name = 'v3­large­minimalistic_224_1.0_float'
model_path = '../models/' + model_name + '.tflite'
assert os.path.isfile(model_path), 'Please provide valid path for the model'

data_path = './calib_set.npy'
assert os.path.isfile(data_path), 'Please provide valid path for a dataset'
har_path = model_name + '.har'

It is highly recommended to use GPU when running the analysis tool but if there isn’t one in the machine the code
will run on the CPU and be ready to expect a long running time.

[]: if len(tf.config.list_physical_devices('GPU')) == 0:
print(”Warning: you are running the accuracy analysis tool without a GPU, expect�

↪→long running time.”)

4.6.2. Preparing theModel

In this step, the model will be parsed and optimized to prepare it for analysis. For more details checkout the Parsing
tutorial and the Model Optimization tutorial.

[]: runner = ClientRunner(hw_arch='hailo8')
runner.translate_tf_model(model_path, model_name)

model_script = 'normalization1 = normalization([127.5, 127.5, 127.5], [127.5, 127.5,�
↪→127.5])\n'
runner.load_model_script(model_script)

runner.optimize(data_path)

4.6.3. Accuracy Analysis

Though most models work well with our default optimization, some suffer from high quantization noise that in-
duces substantial accuracy degradation. As an example, we choose the MobileNet-v3-Large-Minimalistic neural net-
work model that, due to its structural characteristics, results in a high degradation of 6% for Top-1 accuracy on the
ImageNet-1K validation dataset.

To analyze the source of degradation, the Hailo analyze_noise API will be used. The analysis tool uses a given
dataset to measure the noise level in each layer and allows to pinpoint problematic layers that should be handled.
The analysis tool uses the entire dataset by default, to limit the number of images that can use the data_count
argument. It is recommended to use at least 64 images, preferably not from the calibration set. To keep the tool’s
processing time reasonable, we recommend 100-200 images.

The following is equivalent to running the CLI command:

hailo analyze­noise quantized_model_har_path ­­data­path data_path ­­batch­
size 2 ­­data­count 16

The output is saved inside the HAR, to be visualized later on by the Profiler.

[]: runner.analyze_noise(data_path, batch_size=2, data_count=16) # Batch size is 1 by�
↪→default
runner.save_har(har_path)

Page 44 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.6.4. Visualizing the Results

In this section a general explanation for the noise analysis report will be provided. To visualize the accuracy analysis
results and debug our quantization noise the Hailo Model Profiler will be used. The Hailo Model Profiler will generate
an HTML report with all the information for the model. In the ACCURACY tab of the report, all the relevant information
for this tutorial can be found:

[]: !hailo profiler {har_path}
Note: When working on a remote computer, manual opening of the HTML file may be�
↪→required

SNR Chart

Displayed on the top ribbon, only if the profiled HAR contains the analyze-noise data.

This chart shows the sensitivity of each layer to quantization (measured separately for each output layer). To measure
the quantization noise of each layer’s output, iterate over all layers when the given layer is the only quantized layer,
while the rest are kept in full precision. While the number of SNR values will be the number of outputs layer affected
by the quantized layer. The graph shows the SNR values in decibels (dB) and any value higher than 10 should be fine
(higher is better).

In case an output layer is sensitive (low SNR) across many layers it is recommended to re-quantize with one of the
following model script commands (not in the scope of this tutorial):

• Configure the output layer to 16-bit output. For example, using the model script command:
quantization_param(output_layer1, precision_mode=a16_w16).

• When possible, offload output activation to the accelerator. For example, the following command adds sig-
moid activation to the output layer conv51: change_output_activation(conv51, sigmoid)
and should be used to offload sigmoid from post-processing code to the accelerator.

• Use massive fine tune which is enabled by default in optimization_level=2 but can be customized. For
example, specific fine-tune command: post_quantization_optimization(finetune,
policy=enabled, learning_rate=0.0001, epochs=8, batch_size=4,
dataset_size=4000). Other useful attributes to this command are: loss_layer_names, loss_factors
and loss_types which allows the user to manually edit the loss function of the fine tune training. In a case
where the fine tune failed due to GPU memory, try to use a lower batch_size.

• Increase the optimization level. For example,model_optimization_flavor(optimization_level=4)
will set the highest optimization level (default is 2).

• Decrease the compression level. For example,model_optimization_flavor(compression_level=0)
will disable compression (default value is 1).

Layers Information

Displayed on the right when a layer is selected.

This section provide per-layer detailed information that will help debug the local quantization errors in the model, for
example, specific layer that is very sensitive for quantization. Note that quantization noise may stem from the layers’
weights, activations or both.

• Weight Histogram: this graph shows the weights distribution and can help to identify outliers. If outliers exist
in the weight distribution, the following command can be used to clip it, for example, clip the kernel values of
conv27: pre_quantization_optimization(weights_clipping, layers=[conv27],
mode=percentile, clipping_values=[0.01, 99.99])

• Activation Histogram: this graph shows the activation distribution as collected by the layer noise
analysis tool. Wide activation distribution is a major source of degradation source and in gen-
eral it is strongly recommend to use a model with batch normalization after each layer to limit the

Page 45 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

layer’s extreme activation values. Another important argument that affects the activation distribu-
tion is the calibration size that was used during quantization, to raise it, use the following command:
model_optimization_config(calibration, calibset_size=512), the default value
for calibration is 64. In case of outliers in the layers’ activation distribution, we recommend using the a clip-
ping command, for example: pre_quantization_optimization(activation_clipping,
layers={*}, mode=percentile, clipping_values=[0.01, 99.99])

• Scatter Plot: this graph shows a comparison between full precision and quantized values of the layers’
activation. The X-axis of each point in this graph is its value in full precision and Y-axis is the value after
quantization. Zero quantization noise means the slope would be exactly one. In case of bias noise you expect
to find many points above/below the line that represent imperfect quantization, if this is the case, you should
use the following commands: post_quantization_optimization(bias_correction,
policy=enabled) and post_quantization_optimization(finetune, pol­
icy=disabled)

To examine these results, first plot the SNR graph for this specific model. Note that in general the profiler report
should be used but here an alternative visualization will be used.

[]: def get_snr_results():
SNR results are saved in the params statistics object
params_statistics = runner.get_params_statistics()
out_layer = 'v3­large­minimalistic_224_1_0_float/output_layer1'
layers = []
snr = []
for layer in runner.get_hn_model():
We get the SNR for each analyzed layer for a specific output layer (there is only�

↪→one in this case)
layer_snr = params_statistics.get(f'{layer.name}/layer_noise_analysis/noise_

↪→results/{out_layer}')
if layer_snr is not None:
layers.append(layer.name_without_scope)
snr.append(layer_snr[0].tolist())

return layers, snr

def get_worst_snr_layers(layers, snr):
worst_snr_layers = [(layers[i], snr[i]) for i in np.argpartition(snr, 3)[:3]]
print(f'Worst SNR is obtained in the following layers:\n{worst_snr_layers}')
return worst_snr_layers

def plot_snr_graph(layers, snr):
fig, ax = plt.subplots(figsize=(12, 3))
plt.plot(layers, snr)
plt.title(f'Per­Layer Logits SNR ({model_name}), higher is better.')
plt.xlabel('Layer')
plt.xticks(rotation=75, fontsize='x­small')
plt.ylabel('SNR')
plt.grid()
plt.show()

layers, snr = get_snr_results()
get_worst_snr_layers(layers, snr)
plot_snr_graph(layers, snr)

Page 46 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

4.6.5. Re-Optimizing theModel

Next, we will try to improve the model accuracy results by using specific model script commands. Specifically, we
will use the activation_clipping command on the problematic layers to clip outliers from the output of the
layers and optimization_level=2. For further information we refer the user to the full Accuracy report in
the profiler HTML.

[]: runner = ClientRunner(hw_arch='hailo8')
runner.translate_tf_model(model_path, model_name)

model_script_commands = [
'normalization1 = normalization([127.5, 127.5, 127.5], [127.5, 127.5, 127.5])\n',
'model_optimization_config(calibration, calibset_size=128)\n',
'pre_quantization_optimization(activation_clipping, layers=[dw1, conv2, conv3],�

↪→mode=percentile, clipping_values=[0.5, 99.5])\n',
'pre_quantization_optimization(weights_clipping, layers=[dw1], mode=percentile,�

↪→clipping_values=[0.0, 99.99])\n',
'model_optimization_flavor(optimization_level=2, compression_level=0)\n',

]
runner.load_model_script(''.join(model_script_commands))

runner.optimize(data_path)

runner.analyze_noise(data_path, batch_size=2, data_count=16) # Batch size is 1 by�
↪→default
runner.save_har(har_path)

!hailo profiler {har_path}
Note: When working on a remote computer, manual opening of the HTML file may be�
↪→required

After fixing the optimization process, it should be possible to reduce the model degradation to 1% (Top-1 accuracy
on the ImageNet-1K validation dataset) which is usually the target goal for classification models.

The improvement can also be seen from the new SNR graph:

[]: layers, snr = get_snr_results()
get_worst_snr_layers(layers, snr)
plot_snr_graph(layers, snr)

4.7. Quantization Aware Training Tutorial

This tutorial is intended for advanced users, If the previous accuracy results were satisfactory, it can be omitted..

This section will describe the steps for performing Quantization Aware Training (QAT) using Hailo’s quantized model.
It is assumed that the User already has a background in training deep neural networks.

Quantization aware training - refers to a set of algorithms that incorporate full network training in a quantized do-
main. The technique utilizes the straight-through estimator (STE) concept to allow for backpropagation through non-
differentiable operations, such as rounding and clipping, during the training process. In deep learning literature, QAT
typically refers to an extended training procedure using the full dataset, labels, and multiple GPUs, similar to the
original training process. However, it can also be applied in other scenarios.

The main differences between the quantization-aware training method and the optimization method shown in pre-
vious tutorials are:

• QAT enables training using labeled data, whereas the FineTune algorithm (Model Optimization Tutorial) is limited
to training using knowledge distillation from the full precision model.

• QAT supports running on multiple GPUs for faster training.

Page 47 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• QAT allows for the use of a pipeline of networks or the integration of post-processing functions into the training
procedure.

In summary, QAT is a useful tool for training quantized models with labeled data and supports multi-GPU training
and integration of post-processing functions. Currently, Hailo QAT only supports Keras.

The remainder of this tutorial will cover the following steps:

• Input definitions: In this step, we will prepare the dataset and model for training and testing.

• Full precision training: A short training procedure will be run to initialize the model’s weights.

– In real scenarios, a complete full precision training procedure should take place here. In this notebook,
the full precision training has been shortened to simplify the tutorial.

• Translation of the model: The model will be exported to TFlite, parsed, optimized, and evaluated using the
Hailo toolchain.

• Running QAT: Finally, quantization-aware training will be performed on the quantized model to optimize its
accuracy.

Requirements:

• Run this code in Jupyter notebook, see the Introduction tutorial for more details.

[]: from hailo_sdk_client import ClientRunner, InferenceContext

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

4.7.1. Input Definitions

The input definitions step of this tutorial involves using the MNIST dataset and a simple Convolutional Neural Network
(CNN). The code provided will download the dataset and prepare it for training and evaluation.

[]: # Model parameters
num_classes = 10
input_shape = (28, 28, 1)

Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

Prepare the dataset
x_train = x_train.astype(”float32”) / 255
x_test = x_test.astype(”float32”) / 255
x_train = np.expand_dims(x_train, ­1)
x_test = np.expand_dims(x_test, ­1)
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)
print(f”Total number of training samples: {x_train.shape[0]}”)
print(f”Total number of testing samples: {x_test.shape[0]}”)

[]: # Define the model
model = tf.keras.Sequential(
[
tf.keras.Input(shape=input_shape),
tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation=”relu”),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation=”relu”),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),

(continues on next page)

Page 48 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://www.tensorflow.org/datasets/catalog/mnist

Hailo Dataflow Compiler User Guide

(continued from previous page)

tf.keras.layers.Dense(num_classes, activation=”softmax”),
]

)
model.summary()

4.7.2. Full Precision Training

In this step, a short training procedure will be run to initialize the model’s weights. Only 5,000 images from the full
training dataset will be used. The accuracy of the model will be measured on the test dataset.

[]: # Run short training (using only 5k images)
model.compile(loss=”categorical_crossentropy”, optimizer=”adam”, metrics=[
↪→”accuracy”])
model.fit(x_train[:5000], y_train[:5000], batch_size=128, epochs=1)

Evaluate the results
score = model.evaluate(x_train, y_train)
print(f”Train accuracy: {100 * score[1]:.3f} (Top­1)”)
score = model.evaluate(x_test, y_test)
print(f”Test accuracy: {100 * score[1]:.3f} (Top­1)”)

4.7.3. Translation of theModel

In this step, a trained model will be exported into TFlite format to prepare it for use in the Hailo toolchain. After being
translated into TFlite, the model can be parsed, optimized, and inferred using the Hailo DFC. The results of the full
precision model will be compared to those of the quantized model. It is important to note that the results of the
full precision model should be identical to those obtained from the Keras evaluation, while the quantized model may
experience some degradation due to quantization noise.

[]: # Export the model to TFlite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
tflite_model_path = 'model.tflite'
with tf.io.gfile.GFile(tflite_model_path, 'wb') as f:
f.write(tflite_model)

[]: # Parse the TFlite model
runner = ClientRunner(hw_arch='hailo8')
runner.translate_tf_model(tflite_model_path)

Optimize the model: enforce 60% 4­bit weights without optimization
model_script_commands = [
'model_optimization_config(compression_params, auto_4bit_weights_ratio=0.6)\n'
'model_optimization_flavor(optimization_level=0)\n'

]

runner.load_model_script(''.join(model_script_commands))
runner.optimize(x_train[:1024])

[]: # Evaluate the results
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as q_ctx:
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as fp_ctx:
y_infer_fp = runner.infer(fp_ctx, x_test)
y_infer_q = runner.infer(q_ctx, x_test)

full_precision_result = np.count_nonzero(np.argmax(y_infer_fp, axis=­1) == np.
↪→argmax(y_test, axis=­1)) / len(y_test)

(continues on next page)

Page 49 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

quantize_result = np.count_nonzero(np.argmax(y_infer_q, axis=­1) == np.argmax(y_
↪→test, axis=­1)) / len(y_test)
print(f”Test accuracy (floating point): {100 * full_precision_result:.3f} (Top­1)”)
print(f”Test accuracy (quantized): {100 * quantize_result:.3f} (Top­1)”)
print(f”Degradation: {100 * (full_precision_result ­ quantize_result):.3f}”)

4.7.4. Running QAT

In this final step, a quantized model will be optimized to enhance its accuracy. Therunner.get_keras_model
API will be used to obtain a Keras model initialized with the quantized weights. The model can then be trained using
straight-through estimator (STE) method.

• The tf.distribute.MirroredStrategy API is being used to enable synchronous training across
multiple GPUs on the same machine.

• The runner.get_keras_model API must be used with trainable=True to allow training (usage
of fit).

• To the Keras model additional layers, post-processing or other models can be added. For example, here a new
tf.keras.layers.Softmax layer is being added.

• For training, use the fit API provided by Keras. Training can be done with customized loss functions and
different optimizers.

• After training is complete, update the ClientRunner weights with the updated model. This is done using
therunner.set_keras_model API. Only allowed changes to the Keras model includes weight changes.
Once the new weights are updated, compile the model with the new weights using the runner.compile
API.

[]: with tf.distribute.MultiWorkerMirroredStrategy().scope():
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx:

get the Hailo Keras model for training
model = runner.get_keras_model(ctx, trainable=True)

add external post­processing
new_model = tf.keras.Sequential(
[
model,
tf.keras.layers.Softmax()

]
)

adding external loss.
note that this compile API only compiles the Keras model but doesn't compile the�

↪→model to the Hailo HW.
new_model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),

optimizer=tf.keras.optimizers.Adam(learning_rate=1e­6),
metrics=[”accuracy”])

move numpy data to tf.data.Dataset to be used by multiple GPUs
train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_data = train_data.batch(128)
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.

↪→AutoShardPolicy.OFF
train_data = train_data.with_options(options)

start QAT
log = new_model.fit(train_data, batch_size=128, epochs=10)

(continues on next page)

Page 50 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

set the Keras model after training. The model is already optimized, so do not run�
↪→optimize() again.

runner.set_keras_model(model)

plot training curve
plt.plot(log.history['accuracy'])
plt.title('Model Accuracy')
plt.ylabel('Top­1')
plt.xlabel('Epoch')
plt.grid()
plt.show()

[]: # Evaluate the results
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as q_ctx:
y_infer_qat = runner.infer(q_ctx, x_test)

qat_result = np.count_nonzero(np.argmax(y_infer_qat, axis=­1) == np.argmax(y_test,�
↪→axis=­1)) / len(y_test)
print(f”Test accuracy (quantized) before QAT: {100 * quantize_result:.3f} (Top­1)”)
print(f”Test accuracy (quantized) after QAT: {100 * qat_result:.3f} (Top­1)”)
print(f”Accuracy improvement: {100 * (qat_result ­ quantize_result):.3f}”)

4.7.5. Knowledge Distillation and QAT

QAT can gain additional accuracy with training using a teacher (the full precision model) to train the student model (the
quantized model) - knowledge distillation. To use the full precision model, call therunner.get_keras_model
API with a different context and change the loss accordingly. In the following code, a new class Distiller is
generated to distill the full precision and combine with the supervision of the labels.

• Note that, Hailo’s FineTune algorithm works in the same way as well (more information can be found in the
Model Optimization Tutorial).

[]: class Distiller(tf.keras.Model):
def __init__(self, student, teacher):
super().__init__()
self._teacher = teacher
self._student = student

def compile(self, optimizer, metrics, student_loss_fn, distillation_loss_fn,�
↪→alpha=0.1, temperature=3):

super().compile(optimizer=optimizer, metrics=metrics)
self._student_loss_fn = student_loss_fn
self._distillation_loss_fn = distillation_loss_fn
self._alpha = alpha
self._temperature = temperature

def train_step(self, data):
unpack data (image, label)
x, y = data

forward pass of teacher
teacher_predictions = self._teacher(x, training=False)

with tf.GradientTape() as tape:
forward pass of student
student_predictions = self._student(x, training=True)

compute supervised loss
(continues on next page)

Page 51 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/abs/1503.02531

Hailo Dataflow Compiler User Guide

(continued from previous page)

student_loss = self._student_loss_fn(y, student_predictions)

compute distillation loss
distillation_loss = (
self._distillation_loss_fn(
tf.nn.softmax(teacher_predictions / self._temperature, axis=1),
tf.nn.softmax(student_predictions / self._temperature, axis=1)

)
* self._temperature**2

)

total_loss = self._alpha * student_loss + (1 ­ self._alpha) * distillation_loss

compute gradients
trainable_vars = self._student.trainable_variables
gradients = tape.gradient(total_loss, trainable_vars)

update weights
self.optimizer.apply_gradients(zip(gradients, trainable_vars))

update the metrics
results = {m.name: m.result() for m in self.metrics}
results.update(
{”total_loss”: total_loss, ”student_loss”: student_loss, ”distillation_loss”:

↪→ distillation_loss}
)
return results

[]: # Parse the TFlite model
runner = ClientRunner(hw_arch='hailo8')
runner.translate_tf_model(tflite_model_path)

Optimize the model: enforce 40% 4bit weights without optimization
model_script_commands = [
'model_optimization_config(compression_params, auto_4bit_weights_ratio=0.6)\n'
'model_optimization_flavor(optimization_level=0)\n'

]

runner.load_model_script(''.join(model_script_commands))
runner.optimize(x_train[:1024])

with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx_q:
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx_fp:

get the Hailo Keras model for training
student = runner.get_keras_model(ctx_q, trainable=True)

geth the full precision model for kd
teacher = runner.get_keras_model(ctx_fp, trainable=False)

create the kd model
distiller = Distiller(student=student, teacher=teacher)
distiller.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e­6),

metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
student_loss_fn=tf.keras.losses.CategoricalCrossentropy(),
distillation_loss_fn=tf.keras.losses.KLDivergence(),
alpha=0.1,
temperature=10)

start QAT
log = distiller.fit(x_train, y_train, batch_size=128, epochs=10)

(continues on next page)

Page 52 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(continued from previous page)

set the Keras model after training
runner.set_keras_model(student)

[]: # Evaluate the results
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as q_ctx:
y_infer_qat = runner.infer(q_ctx, x_test)

qat_with_kd_result = np.count_nonzero(np.argmax(y_infer_qat, axis=­1) == np.
↪→argmax(y_test, axis=­1)) / len(y_test)
print(f”Test accuracy (quantized) with QAT: {100 * qat_result:.3f} (Top­1)”)
print(f”Test accuracy (quantized) with QAT and KD: {100 * qat_with_kd_result:.3f}�
↪→(Top­1)”)
print(f”Accuracy improvement: {100 * (qat_with_kd_result ­ qat_result):.3f}”)

Page 53 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5. Building Models

This section describes the process of taking ONNX/TF trained model and compiling them to a Hailo executable binary
file (HEF). The main API for this process is the ClientRunner. The client runner is a stateful object that handles
all stages. In each stage, the client runner can be serialized into an Hailo archive file (HAR) that can be loaded in the
future to initialize a new client runner. There are three main stages: Translation, Optimization and Compilation.

1. Translation: this process takes an ONNX/TF model and translates it into Hailo’s internal representation. For
that, the translate_tf_model()method or the translate_onnx_model()method should be
used. For examples, see the Parsing Tutorial. At the end of this stage the state of the runner is changed from
Uninitialized to Hailo Model and new functionality is available:

A. Running inference on SDK_NATIVE context. For further details refer to: Model Optimization Tutorial.

B. Profile the model to obtain model overview. For example, using the command line interface: hailo
profiler ­­help.

Note: The same functionality can be obtained using the command line interface. For example, hailo
parser {tf, onnx} ­­help.

2. Optimization: in this stage the model is being optimized before compilation using theoptimize()method.
The optimize method runs several steps of optimization including quantization which may degrade the model
accuracy; therefore, evaluation is needed to verify the model accuracy. For further information see Model Op-
timization Workflow and Model Optimization Tutorial. The method load_model_script() can be chosen
to use advanced configuration before calling optimize. At the end of the optimization stage, the state of the
runner is changed from Hailo Model to Quantized Model and new functionality is available:

A. Running inference onSDK_QUANTIZED context (quantized model emulation). For further details refer
to: Model Optimization Tutorial. This step allows the measurement of the degradation due to quantization
of the model without executing on the device. It is recommended to evaluate the quantized model in
emulation before proceeding to compilation.

B. Run the analyze_noise()method to execute the layer noise analysis tool and analyze the model’s
accuracy. This tool is useful to debug quantization issues in case of large degradation in your quantized
model. For further details see the Layer Noise Analysis Tutorial.

An alternative option is to use the optimize_full_precision() method before calling opti­
mize() to run only part of the optimization process. In which case, the runner state will be FP optimized
model and it will include model modifications, such as normalization or resize, but without the quantization
process. Runner in this state can run inference with SDK_FP_OPTIMIZED context, see example in: Model
Optimization Tutorial.

Note: The same functionality can be obtained using the command line interface. For example, hailo op­
timize ­­help

3. Compilation: this step takes a runner in state Quantized Model and compiles it to a Hailo executable binary
file (HEF). At the end of this stage the state of the runner is changed fromQuantizedModel to CompiledModel,
which allows the exporting of a binary HEF file to run on the Hailo hardware.

A. Save the HEF file to be used with the HailoRT. For further details refer to the Compilation Tutorial.

B. Run Inference on hardware. For further details refer to: Inference Tutorial.

Note: The same functionality can be obtained using the command line interface. For example, hailo com­
piler ­­help

The following block diagram illustrates how the runner states and the API switch between each other.

Page 54 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Hailo model

Quantized model

Uninitialized

Compiled model

runner = ClientRunner(...)

runner.translate_tf_model(...)
or

runner.translate_onnx_model(...)

runner.optimize(...)

runner.compile(...)

runner.optimize_full_precision(...)

FP optimized model

Figure 5. Description of the ClientRunner states and its API

Page 55 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.1. Translating Tensorflow and ONNXModels

5.1.1. Using the Tensorflow Parser

The Dataflow Compiler Tensorflow parser supports the following frameworks:

• Tensorflow v1.15.4, including Keras v2.2.4-tf.

• Tensorflow v2.12.0, including Keras v2.12.0.

• Tensorflow Lite v2.10.0.

The Parser translates the model to Hailo Archive (.har) format. Hailo Archive is a tar.gz archive file that captures the
“state” of the model - the files and attributes used in a given stage from parsing to compilation.

The basic HAR file includes:

• HN file, which is a JSON-like representation of the graph structure that is deployed to the Hailo hardware.

• NPZ file, which includes the weights of the model.

More files are added when the optimization and compilation stages are done.

Note: Advanced users can use the hailo har CLI tool to extract the internal files of the HAR.

Note: Tensorflow 1.x models (checkpoints, frozen protobuf) support is planned for deprecation on April 2024. It is
recommended to export/convert to TFLite via Keras & Tensorflow’s APIs (Python/CLI), see more info on the official
(Tensorflow guide).

Tensorflow models are translated to HAR by calling the translate_tf_model() method of the Clien­
tRunner object. The nn_framework optional parameter tells the Parser whether it’s a TF1 or TF2 model.
The start_node_names and end_node_names optional parameters tell the Parser which parts to in-
clude/exclude from parsing. For example, the user may want to exclude certain parts of the post-processing and
evaluation, so they won’t be compiled to the Hailo device.

See also:

The Parsing Tutorial shows how to use this API.

The supported input formats are:

• TF1 models – checkpoints and frozen graphs (.pb). The Dataflow Compiler automatically distinguishes between
them based on the file extension, but this decision can be overridden using the is_frozen flag.

• TF2 models – savedmodel format.

• TF Lite models – tflite format.

Supported Tensorflow APIs

Note: APIs that do not create new nodes in the TF graph (such as tf.name_scope and tf.
variable_scope) are not listed because they do not require additional parser support.

Table 1. Supported Tensorflow APIs (layers)

API name Hailo Model Layer Comments

tf.nn.conv2d Convolution

Continued on next page

Page 56 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://www.tensorflow.org/lite/models/convert/convert_models

Hailo Dataflow Compiler User Guide

Table 1 – continued from previous page

API name Hailo Model Layer Comments

tf.concat Concat

tf.matmul Matmul (data-driven) or Dense

tf.avg_pool Average Pooling

tf.nn.maxpool2d Max Pooling

tf.nn.depthwise_conv2d Depthwise Convolution

tf.nn.depthwise_conv2d_native Depthwise Convolution

tf.nn.conv2d_transpose Deconvolution Only SAME_TENSORFLOW
padding

tf.reduce_max Reduce Max Only on the features axis and
with keepdims=True

tf.reduce_mean Average Pooling

tf.reduce_sum Reduce Sum Only with keep­
dims=True

tf.contrib.layers.batch_norm Batch Normalization

tf.image.resize_images Resize See limitations on Supported
layers / Resize

tf.image.resize_bilinear Resize See limitations on Supported
layers / Resize

tf.image.resize_nearest_neighbor Resize See limitations on Supported
layers / Resize

tf.image.crop_to_bounding_box Only static cropping, i.e. the
coordinates cannot be data
dependent

tf.image.resize_with_crop_or_pad Only static cropping without
padding, i.e. the coordinates
cannot be data dependent

tf.nn.bias_add

tf.add • Only one of the following:
• Bias add
• Elementwise addition layer
• Const scalar addition
• As a part of input tensors

normalization

tf.multiply Only one of the following:
* Elementwise multiplication
layer * Const scalar multipli-
cation * As a part of input ten-
sors normalization

tf.subtract • Only one of the following:
• Elementwise subtraction

layer
• Const scalar subtraction
• As a part of input tensors

normalization

Continued on next page

Page 57 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 1 – continued from previous page

API name Hailo Model Layer Comments

tf.divide • Only one of the following:
• Elementwise division layer
• Const scalar division
• As a part of input tensors

normalization

tf.negative

tf.pad External Padding

tf.reshape • Only in specific cases, for
example:

• Features to Columns Re-
shape layer

• Between Conv and Dense
layers (in both directions)

• As a part of layers such as
Feature Shuffle and Depth
to Space

tf.nn.dropout Ignored on inference

tf.depth_to_space Depth to Space

tf.nn.softmax Softmax

tf.argmax Argmax

tf.split Features Split Only in the features dimen-
sion

tf.slice Slice Only static cropping, i.e. the
coordinates cannot be data
dependent

Slicing (tf.Tensor.__getitem__) • Only sequential slices
(without skipping)

• Only static cropping, i.e.
the coordinates cannot be
data dependent

tf.nn.space_to_depth Space to Depth

tf.math.square FeatureMultiplier (type Square)

tf.math.pow FeatureMultiplier (type Square) Only in specific case, pow(2)
which is square

tf.norm Reduce L2 Translated as a block of
several Hailo layers, support
keepdims=True, axis = 1,2

tf.math.l2_normalize Translated as a block of sev-
eral Hailo layers

tf.math.minimum Clip Activation

tf.math.maximum Clip Activation or Elementwise Max Elementwise Max is trans-
lated as a combination of
Concat and Reduce Max

Page 58 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 2. Supported Tensorflow APIs (activations)

API name Hailo Model Layer Comments

tf.nn.relu Relu Activation

tf.nn.sigmoid Sigmoid Activation

tf.nn.leaky_relu Leaky Activation

tf.nn.elu Elu Activation

tf.nn.gelu Gelu Activation

tf.nn.relu6 ReLU6 Activation

tf.nn.silu SiLU Activation

tf.nn.softplus Softplus Activation

tf.nn.softsign Softsign Activation

tf.nn.swish Swish Activation

tf.exp Exp Activation

tf.tanh Tanh Activation

tf.abs Only as a part of the Delta ac-
tivation parsing

tf.sign Only as a part of the Delta ac-
tivation parsing

tf.sqrt Sqrt Activation

tf.math.log Log Activation

tf.clip_by_value Clip Activation

Table 3. Supported Tensorflow APIs (others)

API name Comments

tf.Variable

tf.constant

tf.identity

Slim APIs

Note: APIs that do not create new nodes in the TF graph (such as slim.arg_scope) are not listed because they
do not require additional parser support.

Table 4. Supported Slim APIs

API name Comments

slim.conv2d

slim.batch_norm

slim.max_pool2d

slim.avg_pool2d

slim.bias_add

slim.fully_connected

Continued on next page

Page 59 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 4 – continued from previous page

API name Comments

slim.separable_conv2d

Keras APIs

Table 5. Supported Keras APIs

API name Hailo Model Layer Comments

layers.Conv1D Convolution

layers.Conv2D Convolution

layers.Conv2DTranspose Deconvolution

layers.Dense Dense

layers.MaxPooling1D Max Pooling

layers.MaxPooling2D Max Pooling

layers.GlobalAveragePooling2D Average Pooling

layers.GlobalMaxPooling2D Max Pooling

layers.Activation Activation

layers.BatchNormalization Batch Normalization Experimental support

layers.ZeroPadding2D

layers.Flatten Dense Only to reshape Conv output
into Dense input

layers.add Elementwise Addition Only elementwise add after
conv

layers.concatenate Concat

layers.UpSampling2D Resize Only interpola­
tion='nearest'

layers.Softmax Softmax

layers.Reshape Only in specific cases such
as Features to Columns Re-
shape and Dense to Conv Re-
shape

layers.ReLU ReLU Activation

layers.PReLU PReLU Activation

layers.LeakyReLU Leaky Activation

activations.elu Elu Activation

activations.exponential Exp Activation

activations.gelu Gelu Activation

activations.hard_sigmoid Hardsigmoid Activation

activations.relu Relu Activation

activations.sigmoid Sigmoid Activation

activations.softplus Softplus Activation

activations.softsign Softsign Activation

activations.swish swish Activation

Continued on next page

Page 60 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 5 – continued from previous page

API name Hailo Model Layer Comments

activations.tanh Tanh Activation

Group Conv Parsing

Tensorflow v1.15.4 has no group conv operation. The Hailo Dataflow Compiler recognizes the following pattern and
automatically converts it to a group conv layer:

• Several (>2) conv ops, which have the same input layer, input dimensions, and kernel dimensions.

• The features are equally sliced from the input layer into the convolutions.

• They should all be followed by the same concat op.

• Bias addition should be before the concat, after each conv op.

• Batch normalization and activation should be after the concat.

Feature Shuffle Parsing

Tensorflow v1.15.4 has no feature shuffle operation. The Hailo Dataflow Compiler recognizes the following pattern
of sequential ops and automatically converts it to a feature shuffle layer:

• tf.reshape from 4-dim [batch, height, width, features] to 5-dim [batch, height,
width, groups, features in group].

• tf.transpose where the groups and features in group dimensions are switched. In other words, this op
interleaves features from the different groups.

• tf.reshape back to the original 4-dim shape.

Code example:

reshape0 = tf.reshape(input_tensor, [1, 56, 56, 3, 20])
transpose = tf.transpose(reshape0, [0, 1, 2, 4, 3])
reshape1 = tf.reshape(transpose, [1, 56, 56, 60])

More details can be found in the Shufflenet paper (Zhang et al., 2017).

Squeeze and Excitation Block Parsing

Squeeze and excitation block parsing is supported. An example Tensorflow snippet is shown below.

out_dim = 32
ratio = 4
conv1 = tf.keras.layers.Conv2D(out_dim, 1)(my_input)
x = tf.keras.layers.GlobalAveragePooling2D()(conv1)
x = tf.keras.layers.Dense(out_dim // ratio, activation='relu')(x)
x = tf.keras.layers.Dense(out_dim, activation='sigmoid')(x)
x = tf.reshape(x, [1, 1, 1, out_dim])
ew_mult = conv1 * x

Page 61 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/pdf/1707.01083.pdf

Hailo Dataflow Compiler User Guide

Threshold Activation Parsing

The threshold activation can be parsed from:

tf.keras.activations.relu(input_tensor, threshold=threshold)

where threshold is the threshold to apply.

Delta Activation Parsing

The delta activation can be parsed from:

val * tf.sign(tf.abs(input_tensor))

where val can be any constant number.

5.1.2. Using the Tensorflow Lite Parser

Tensorflow Lite models are translated by calling the translate_tf_model() method of the ClientRun­
ner object. No additional parameters needed.

Note: Hailo supports 32-bit/16-bit TFLite models, since our Model Optimization stage use the high precision weights
to optimize the model for Hailo devices. Models that are already quantized to 8-bit are not supported.

See also:

For more info, and some useful examples on converting models from Tensorflow to Tensorflow-lite, refer to the
Parsing Tutorial, or the official Tensorflow guide on (tflite converter CLI).

Supported Tensorflow Lite Operations

Table 6. Supported TFLite operations (layers)

Operator name Hailo Model Layer Comments

ADD Elementwise Addition

AVERAGE_POOL_2D Average Pooling

CONCATENATION Concat

CONV_2D Convolution

DEPTHWISE_CONV_2D Depthwise Convolution

DEPTH_TO_SPACE Depth to Space

DEQUANTIZE Only for parsing weight
variables that are cast from
float32 to float16

FULLY_CONNECTED Dense

L2_NORMALIZATION Translated as a block of sev-
eral Hailo layers

MAX_POOL_2D Max Pooling

MUL Elementwise Multiplication

RESHAPE

Continued on next page

Page 62 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://www.tensorflow.org/lite/models/convert/convert_models#command_line_tool_

Hailo Dataflow Compiler User Guide

Table 6 – continued from previous page

Operator name Hailo Model Layer Comments

RESIZE_BILINEAR Resize,See limitations on Supported
layers / Resize

SOFTMAX Softmax

SPACE_TO_DEPTH Space to Depth

PAD External Padding

GATHER Slice

TRANSPOSE See limitations on Supported
layers / Reshape and Sup-
ported layers / Transpose

MEAN Average Pooling

SUB Elementwise Subtraction

DIV Elementwise Division

SQUEEZE

STRIDED_SLICE Slice

SPLIT Features Split

CAST

MAXIMUM Clip Activation or Elementwise Max Elementwise Max is trans-
lated as a combination of
Concat and Reduce Max

ARG_MAX Argmax

MINIMUM Clip Activation

NEG Multiplication by Scalar

PADV2 External Padding

SLICE Slice

TRANSPOSE_CONV Deconvolution

EXPAND_DIMS

SUM Reduce Sum

SHAPE

POW FeatureMultiplier (type Square) Supports only pow(2)

REDUCE_MAX Reduce Max

PACK

UNPACK

REDUCE_MIN

SQUARE FeatureMultiplier (type Square)

RESIZE_NEAREST_NEIGHBOR Resize See limitations on Supported
layers / Resize

Table 7. Supported TFLite operations (activations)

Operator name Hailo Model Layer Comments

LOGISTIC Sigmoid Activation

RELU Relu Activation

RELU6 Relu6 Activation

Continued on next page

Page 63 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 7 – continued from previous page

Operator name Hailo Model Layer Comments

TANH Tanh Activation

EXP Exp Activation

PRELU PReLU Activation

LESS Less Activation

GREATER Only as a part of a Threshold
activation parsing

EQUAL Equal Activation

LOG Log Activation

SQRT Sqrt Activation

LEAKY_RELU Leaky Activation

ELU Elu Activation

HARD_SWISH Hardswish Activation

ABS Delta Activation Only as a part of the Delta ac-
tivation parsing

ADD_N Elementwise Addition

Sign Delta Activation Only as a part of the Delta ac-
tivation parsing

CUSTOM Only when the operator rep-
resents the biased delta acti-
vation

5.1.3. Using the ONNX Parser

ONNX models are translated by calling the translate_onnx_model()method of the ClientRunner ob-
ject. The supported ONNX opset versions are 8 and 11-17.

Supported ONNX Operations

Table 8. Supported ONNX operations (layers)

Operator name Hailo Model Layer Comments

Add Only one of the following:• Bias add
• Elementwise add
• As a part of input tensors

normalization
• Const scalar addition

ArgMax Argmax

AveragePool Average Pooling

BatchNormalization Batch Normalization

Concat Concat

Conv Convolution • Depthwise convolution is
also implemented by this
ONNX operation

• 3D convolution (preview)

Continued on next page

Page 64 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 8 – continued from previous page

Operator name Hailo Model Layer Comments

ConvTranspose Deconvolution

DepthToSpace Depth to Space Supported modes:• DCR: the default mode,
equivalent to Tensorflow’s
DepthToSpace operator

• CRD: reflects PyTorch’s Pix-
elShuffle operator

Div Only one of the following:• Input tensors normaliza-
tion

• Const scalar division
• Elementwise division

Dropout Ignored on inference

Einsum Convolution Only specific formula:
nkctv,kvw->nctw

Equal Equal Activation

Flatten Only in specific cases such as
between Conv and Dense lay-
ers

Gemm Dense

GlobalAveragePool Average Pooling

GlobalMaxPool Max Pooling

InstanceNormalization Translated as a block of sev-
eral Hailo layers

Identity Only when representing a
constant value

LSTM See limitations on Supported
layers / RNN and LSTM

MatMul Matmul (data-driven) or Dense

Max Translated as a combination
of Concat and Reduce Max
layers

MaxPool Max Pooling

Mean Average Pooling

Mul Only one of the following:• Elementwise Multiplication
layer

• Const scalar multiplication
• As a part of input tensors

normalization
• As a prt of several activa-

tion functions, see below

Neg Multiplication by Scalar

OneHot Convolution with Delta Activation Only with axis=-1

Pad External Padding

ReduceMax Reduce Max Only on the features axis and
with keepdims=True

ReduceMean Average Pooling

Continued on next page

Page 65 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 8 – continued from previous page

Operator name Hailo Model Layer Comments

ReduceSum Reduce Sum Only with keep­
dims=True, or as a
part of a Softmax layer

ReduceSumSquare Translated as a combination
of Reduce Sum and Feature
Multiplier (type Square)

ReduceL2 Translated as a block of sev-
eral Hailo layers, only in spe-
cific cases, after rank4 ten-
sors such as Conv (as oppose
to rank2 such as Dense)

Reshape Only in specific cases, for ex-
ample:• Depth to Space layer
• Feature Shuffle layer
• Features to Columns Re-

shape layer
• Between Conv and Dense

layers (in both directions)
• Spatial flatten format con-

version: [N, H, W, C] -> [N,
1, H*W, C] (preview)

• Spatial unflatten: [N, 1,
H*W, C] -> [N, H, W, C] (pre-
view)

Resize Resize See limitations on Supported
layers / Resize

RNN See limitations on Supported
layers / RNN and LSTM

Slice Slice

Softmax Softmax

Split Features Split Only in the features dimen-
sion

Squeeze Only in specific cases such as
between Conv and Dense lay-
ers

Sub Only one of the following:• Input tensors normaliza-
tion

• Const scalar subtraction
• Elementwise subtraction

Transpose See limitations on Supported
layers / Reshape and Sup-
ported layers / Transpose

Unsqueeze Only in specific cases such as
between Dense and Conv lay-
ers

Upsample Resize Only Nearest Neighbor resiz-
ing

Expand Only as broadcast before ele-
mentwise operations

Continued on next page

Page 66 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 8 – continued from previous page

Operator name Hailo Model Layer Comments

LogSoftmax Only in rank4, translated to a
block of several hailo layers

Pow FeatureMultiplier (type Square) or
pow activation

pow(x, 2) or pow(x, a) where
0<a<1, respectively

Table 9. Supported ONNX operations (activations)

Operator name Hailo Model Layer Comments

Abs Only as a part of Delta or Soft-
sign activations parsing

Elu Elu Activation

Erf Only as a part of a GeLU acti-
vation parsing

Exp Exp Activation

Greater Greater Activation

HardSigmoid Hardsigmoid Activation

LeakyRelu Leaky Activation

Log Log Activation

Mul Only as a part of a Thresh-
old or Delta activation pars-
ing (and several non activa-
tion layers, see above)

PRelu PReLU Activation

Relu Relu Activation

Sigmoid Sigmoid Activation

Sign Only as a part of the Delta ac-
tivation parsing

Softplus Softplus Activation

Softsign Softsign Activation

Sqrt Sqrt Activation

Tanh Tanh Activation

Min Clip Activation

Max Clip Activation

Clip Clip Activation

Less Less Activation

Clamp Clip Activation

Page 67 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Exporting Models from PyTorch to ONNX

The following example shows how to export a PyTorch model to ONNX, note the inline comments which explain each
parameter in the export function.

Note: Before trying this small example, make sure Pytorch is installed in the environment.

Building a simple PyTorch model
class SmallExample(torch.nn.Module):
def __init__(self):
super(SmallExample, self).__init__()
self.conv1 = torch.nn.Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1))
self.bn1 = torch.nn.BatchNorm2d(24)
self.relu1 = torch.nn.ReLU6()

def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
return x

Exporting the model to ONNX
torch_model = SmallExample()
torch_model.eval()
inp = [torch.randn((1, 96, 24, 24), requires_grad=False)]
torch_model(*inp)
onnx_path = 'small_example.onnx'

Note the used args:
export_params makes sure the weight variables are part of the exported ONNX,
training=TrainingMode.PRESERVE preserves layers and variables that get folded into�
↪→other layers in EVAL mode (inference),
do_constant_folding is a recommendation by pytorch to prevent issues with PRESERVED�
↪→mode,
opset_version selects the desired ONNX implementation (currently Hailo support�
↪→opset versions 8 and 11­17).
torch.onnx.export(torch_model, tuple(inp), onnx_path,

export_params=True,
training=torch.onnx.TrainingMode.PRESERVE,
do_constant_folding=False,
opset_version=13)

Supported PyTorch APIs

Supporting PyTorch versions 1.11.0 and higher. Exporting Pytorch models to the ONNX format is done using the
torch.onnx.export function.

Table 10. Supported PyTorch APIs (layers)

API name Hailo Model Layer Comments

torch.nn.AvgPool2d Average Pooling

torch.nn.BatchNorm1d Batch Normalization

torch.nn.BatchNorm2d Batch Normalization

torch.nn.Conv1d Convolution

torch.nn.Conv2d Convolution

Continued on next page

Page 68 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 10 – continued from previous page

API name Hailo Model Layer Comments

torch.nn.Conv3d See limitations on Supported layers /
Convolution

torch.nn.ConvTranspose2d Convolution

torch.nn.Dropout2d Ignored on inference

torch.nn.Flatten Supported only before Dense

torch.nn.functional.interpolate Resize See limitations on Supported
layers / Resize

torch.nn.functional.pad External Padding

torch.nn.InstanceNorm2d Translated to a block of sev-
eral hailo layers

torch.nn.Linear Dense

torch.nn.MaxPool1d Max Pooling

torch.nn.MaxPool2d Max Pooling

torch.nn.Parameter

torch.nn.PixelShuffle Depth to Space

torch.nn.Softmax Softmax

torch.nn.Softmax2d Softmax

torch.nn.Upsample Resize See limitations on Supported
layers / Resize

torch.nn.UpsamplingBilinear2d Resize See limitations on Supported
layers / Resize

torch.nn.UpsamplingNearest2d Resize See limitations on Supported
layers / Resize

torch.argmax Argmax

torch.cat Concat

torch.group_norm Translated to a block of sev-
eral hailo layers

torch.max See supported ONNX opera-
tions: ReduceMax

torch.maximum Elementwise Max See supported ONNX opera-
tions: Max

torch.mul Elementwise Multiplication or Multi-
plication by Scalar

See Supported ONNX opera-
tions: Mul

torch.div Elementwise Division or Multiplica-
tion by Scalar

See Supported ONNX opera-
tions: Div

torch.reshape See Supported ONNX opera-
tions: Reshape

torch.split Features Split See Supported ONNX opera-
tions: Split

torch.sum Reduce Sum See Supported ONNX opera-
tions: ReduceSum

torch.square FeatureMultiplier (type Square)

torch.pow FeatureMultiplier (type Square) or
pow activation

pow(x, 2) or pow(x, a) where
0<a<1, respectively

Continued on next page

Page 69 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 10 – continued from previous page

API name Hailo Model Layer Comments

torch.transpose See supported ONNX opera-
tions: Transpose

torch.einsum Convolution See supported ONNX opera-
tions: Einsum

torch.nn.MultiheadAttention See limitations on Supported
layers / Multi Head Attention

torch.nn.functional.
scaled_dot_product_attention

See limitations on Supported
layers / Multi Head Attention

torch.nn.functional.one_hot Convolution with Delta activation See supported ONNX opera-
tions: OneHot

torch.nn.LogSoftmax Only in rank4, translated to a
block of several hailo layers

torch.squeeze Only in specific cases such as
between Conv and Dense lay-
ers

torch.unsqueeze Only in specific cases such as
between Dense and Conv lay-
ers

torch.nn.RNN Translated to a block of sev-
eral hailo layers

torch.nn.LSTM Translated to a block of sev-
eral hailo layers

Table 11. Supported PyTorch APIs (activations)

API name Hailo Model Layer Comments

torch.abs Delta or Softsign Activation See Supported ONNX opera-
tions: Abs

torch.clip Clip Activation

torch.exp Exp Activation

torch.greater Greater Activation

torch.gt Greater Activation

torch.lt Less Activation

torch.log Log Activation

torch.min Clip Activation

torch.max Clip Activation

torch.sign Delta activation See Supported ONNX opera-
tions: Sign

torch.sqrt Sqrt Activation

torch.nn.ELU Elu Activation

torch.nn.GELU Gelu Activation

torch.nn.Hardsigmoid Hard-sigmoid Activation

torch.nn.Hardswish Hard-swish Activation

torch.nn.Hardtanh Clip Activation

torch.nn.LeakyReLU Leaky Activation

Continued on next page

Page 70 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 11 – continued from previous page

API name Hailo Model Layer Comments

torch.nn.Mish Mish Activation

torch.nn.ReLU Relu Activation

torch.nn.PReLU PRelu Activation

torch.nn.ReLU6 Relu 6 Activation

torch.nn.Sigmoid Sigmoid Activation

torch.nn.SiLU SiLU Activation

torch.nn.Softplus Softplus Activation

torch.nn.Softsign Softsign Activation

torch.nn.Tanh Tanh Activation

torch.clamp Clip Activation

5.1.4. Layer Ordering Limitations

This section describes the TF and ONNX parser limitations regarding ordering of layers.

• Bias – only before Conv, before DW Conv, after Conv, after DW Conv, after Deconv, or after Dense.

5.1.5. Supported Padding Schemes

The following padding schemes are supported in Conv, DW Conv, Max Pooling, and Average Pooling layers:

• VALID

• SAME (symmetric padding)

• SAME_TENSORFLOW

Other padding schemes are also supported, and will translate into External Padding layers.

5.1.6. NMS Post Processing

• NMS is a technique that is used to filter the predictions of object detectors, by selecting final entities (e.g.,
bounding box) out of many overlapping entities. It consists of two stages: score threshold (filtering low-
probability detections by their score), and IoU (Intersection over Union, filtering overlapping boxes).

• The NMS algorithm needs to be fed with bounding boxes, which are calculated out of the network outputs.
This process is called “bbox decoding”, and it consists of mathematically converting the network outputs to
box coordinates.

• The bbox decoding calculations can vary greatly from one implementation to another, and include many types
of math operations (pow, exp, log, and more).

Hailo supports the following NMS post processing algorithms:

On neural core:

1. SSD/EfficientDet: bbox decoding, score threshold filtering, IoU filtering

2. CenterNet: bbox decoding, score threshold filtering

3. YOLOv5: bbox decoding, score_threshold filtering (also works for YOLOv7)

On CPU:

1. YOLOv5: bbox decoding, score_threshold filtering, IoU filtering (also works for YOLOv7)

2. SSD/EfficientDet: bbox decoding, score_threshold filtering, IoU filtering

Page 71 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

3. YOLOX: bbox decoding, score_threshold filtering, IoU filtering

Note: NMS on neural code is only supported in models that are compiled to single context. If the model is compiled
with multi-context, undefined runtime behavior might occur. On this case, you are encouraged to either try single
context compilation using a model script, or perform the NMS on the host platform.

For implementation on hailo devices:

1. When translating the network using the parser, should supply end_node_names parameter with the lay-
ers that come before the post-processing (bbox decoding) section. For Tensorflow models for example, it
is performed using the API translate_tf_model() or the CLI tool: hailo parser tf ­­end­
node­names [list].

Note: Whenhailo CLI tool is being used, the arguments are separated by spaces: ­­end­node­names
END_NODE1 END_NODE2 .. and so on.

2. The post-processing has to be manually added to the translated (parsed) network using a Model
Script command (nms_postprocess), which is fed to the hailo optimize CLI tool, or is loaded with
load_model_script() before calling the optimize() method. The command adds the relevant
postprocess to the Hailo model, according to the architecture (e.g. SSD) and the configuration json file.

Note: The output format of the on-chip post-process can be found on HailoRT guide:

• For Python API, look for tf_nms_format and see definitions of Hailo format and TensorFlow format.

• For CPP API, look for HAILO_FORMAT_ORDER_HAILO_NMS. It is similar to the Hailo format from the Python
API.

3. One can experiment with the output format using the SDK_FP_OPTIMIZED or the SDK_QUANTIZED emulators,
before compiling the model. For more information, refer to the Model Optimization Workflow section.

SSD

SSD (which is also used by EfficientDet models) post-processing consists of bbox decoding and NMS.

Hailo support the specific SSD NMS implementation from TF Object Detection API SSD, tag v1.13.

It is assumed that the default configurations file is used.

The ssd_anchor_generator is used which utilizes the center of a pixel as the anchors centers (so anchors centers
cannot be changed):

anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}

}

It is assumed that each branch (“box predictor”) has its own anchors repeated on all pixels.

The bbox decoding function currently supported on the chip can be found here (seedef _decodewhich con-
tains the mathematical transformation needed for extracting the bboxes).

Page 72 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://github.com/tensorflow/models/tree/v1.13.0/research/object_detection
https://github.com/tensorflow/models/blob/v1.13.0/research/object_detection/samples/configs/ssd_mobilenet_v1_coco.config
https://github.com/tensorflow/models/tree/v1.13.0/research/object_detection

Hailo Dataflow Compiler User Guide

For this NMS implementation, the end_nodes that come just-before the bbox decoding might be:

end_node_names =
[
”BoxPredictor_0/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_0/ClassPredictor/BiasAdd”,
”BoxPredictor_1/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_1/ClassPredictor/BiasAdd”,
”BoxPredictor_2/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_2/ClassPredictor/BiasAdd”,
”BoxPredictor_3/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_3/ClassPredictor/BiasAdd”,
”BoxPredictor_4/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_4/ClassPredictor/BiasAdd”,
”BoxPredictor_5/BoxEncodingPredictor/BiasAdd”,
”BoxPredictor_5/ClassPredictor/BiasAdd”

]

An example for the corresponding SSD NMS JSON is found at: site­packages/hailo_sdk_client/
tools/core_postprocess/nms_ssd_config_example_json_notes.txt, relatively to the vir-
tual environment where the Dataflow Compiler is installed. This example file is not a valid JSON file since it has in-line
comments, but a ready-to-use file is on the same folder.

CenterNet

CenterNet post-processing consists of bbox decoding and then choosing the bboxes with the best scores.

Our CenterNet post-processing corresponds to the CenterNetDecoder class on Gluon-CV (link). Therefore we
support any CenterNet post-processing which is equivalent in functionality to the above-mentioned code.

For this implementation, the end_nodes that come just-before the bbox decoding might be:

end_node_names =
[
”threshold_confidence/threshold_activation/threshold_confidence/re_lu/Relu”,
”CenterNet0_conv3/BiasAdd”,
”CenterNet0_conv5/BiasAdd”

]

An example for the corresponding CenterNet JSON is found at: site­packages/hailo_sdk_client/
tools/core_postprocess/centerNet_example_json_notes.txt, relatively to the virtual en-
vironment where the Dataflow Compiler is installed. This example file is not a valid JSON file since it has in-line
comments, but a ready-to-use file is on the same folder.

YOLOv5

YOLOv5 post-processing (true also for YOLOv7) consists of bbox decoding and NMS. The NMS consists of two parts:

1. Filtering bboxes according to their detection score threshold (“low probability” boxes are filtered).

2. Filtering the remaining bboxes with IoU technique: selecting final entities (e.g., bounding box) out of many
overlapping entities.

Hailo implemented the bbox decoding in-chip, as well as score threshold filtering. The IoU section needs to be im-
plemented on host, but since score threshold filtering has been performed, the number of bboxes to deal with has
decreased by an order of magnitude.

Support for the post-processing from the original implementation of YOLOv5, tag v2.0. has been tested.

The anchors are taken from this file.

The bbox decoding function is described here, on the Detect class.

Page 73 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://github.com/dmlc/gluon-cv/blob/aeca782ff109f16d3fe1dbc56cc23883bd662ff4/gluoncv/nn/coder.py
https://github.com/ultralytics/yolov5/tree/v2.0
https://github.com/ultralytics/yolov5/blob/v2.0/models/yolov5m.yaml
https://github.com/ultralytics/yolov5/blob/v2.0/models/yolo.py

Hailo Dataflow Compiler User Guide

To add a post-process block from the model script, the model needs to be parsed up to the regression layers that
lead into the post-process. These regression layers are given by the end_nodes_names. For example, for this imple-
mentation, on YOLOv5m (tag v2.0) the end_node_names might be:

end_node_names =
[
”Conv_307”,
”Conv_286”,
”Conv_265”

]

An example for the corresponding YOLOv5 JSON is found at: site­packages/hailo_sdk_client/
tools/core_postprocess/nms_yolov5_example_json_notes.txt, relatively to the virtual en-
vironment where the Dataflow Compiler is installed. This example file is not a valid JSON file since it has in-line
comments, but a ready-to-use file is on the same folder.

5.1.7. Reasons and Solutions for Differences in the ParsedModel

On some cases, the translated model might have some differences compared to the original model:

1. BatchNorm layer in training mode. The difference in this case is because the BN params are static in the hailo
model (and folded on relevant layers kernel/bias), and in the original model framework, training mode means
that the layer would first update moving mean/var and then normalize its output in place. To avoid this case:

• PyTorch: export your model to ONNX in preserve or eval mode. For more information, check Parsing
Tutorial.

• Keras: set the model’s learning phase to 0 (test).

2. Otherwise, please contact our support.

5.2. Model Optimization

Translating the models’ parameters numerically, from floating point to integer representation, is also known as quanti-
zation (or model optimization). This is a mandatory step in order to run models on the Hailo hardware. This step takes
place after translating the model from its original framework and before compiling it. For optimized performance,
we recommend using a machine with a GPU when running the model optimization and to prepare a calibration data
with at least 1024 entries.

5.2.1. Model OptimizationWorkflow

The model optimization has two main steps: Full Precision Optimization and Quantization Optimization.

Full precision optimization includes any changes to the model in the floating-point precision domain, for example
Equalization [Meller2019], TSE [Vosco2021] and pruning.

It also applies any model modifications from the model script.

Quantization includes compressing the model from floating point to integer representation of the weights (4/8/16-bits)
and activations (8/16-bits) and algorithms to improve the model’s accuracy, such as IBC [Finkelstein2019], AdaRound
[Nagel2020], FineTune and QFT [McKinstry2019]. Both steps may degrade the model accuracy, therefore, evaluation
is needed to verify the model accuracy.

To perform these steps, one can use the simple optimization flow. Use the hailo optimize CLI, or the
load_model_script() method followed by optimize(). Afterwards continue to the compilation stage.
The simple optimization flow is presented in this diagram.

The advanced Python workflow can also be followed for tracking the accuracy of the model throughout the stages
of the optimization. This advanced workflow, as well as the simple flows, are presented in the Model Optimization
Tutorial.

Page 74 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://hailo.ai/developer-zone/customer-support/

Hailo Dataflow Compiler User Guide

Compile & run
on Hailo device

.load_model
_script()

Translate (parse) an
ONNX or TF model

.optimize()
(GPU recommended)

Python `ClientRunner` API:

`hailo` CLI tool:

`hailo compiler` (to create
.hef, run on Hailo device)

`hailo parser` (used to
parse ONNX/TF model)

‘hailo optimize’
(GPU recommended)

Calibration dateset
(recommended > 1024)

Model
Script

Calibration dateset
(recommended > 1024)

Model
Script

Figure 6. Block diagram of the simple model optimization flow

The advanced workflow consists of number of stages, which are depicted in the flow chart on the next page:

1. A preliminary step would be to test the Native model before any changes, right after parsing. This stage is
important for making sure the parsing was successful, and we built the preprocessing (before the start nodes)
and post processing (after the end nodes) correctly. As mentioned, the SDK_NATIVE emulator is used for
this purpose:

import tensorflow as tf
from hailo_sdk_client import ClientRunner, InferenceContext

runner = ClientRunner(har=model_path)
with runner.infer_context(InferenceContext.SDK_NATIVE) as ctx:
output = runner.infer(ctx, input_data)

The parsed model can also be compared to the original model using the command: hailo parser with the
flag –compare. For more information refer to reasons section.

2. Load the model script, and use the optimize_full_precision() method to apply the model script
and the full precision optimizations.

3. Perform full precision validation, when the model is in its final state before the optimization process. This
stage is important because it allows to emulate the input and output formats, taking into account the model
modifications (normalization, resize, color conversions, etc.). Achieving good accuracy means that the pre/post
processing functions are built correctly, and that the infrastructure is ready for testing the quantized model.
The SDK_FP_OPTIMIZED emulator is used for this purpose:

import tensorflow as tf
from hailo_sdk_client import ClientRunner, InferenceContext

runner = ClientRunner(har=model_path)
with runner.infer_context(InferenceContext.SDK_FP_OPTIMIZED) as ctx:
output = runner.infer(ctx, input_data_modified)

4. Next, call the model optimization API to generate an optimized model. To obtain best performance it is rec-
ommended to use a GPU machine and a dataset with at least 1024 entries for calibration, which is used to
gather activation statistics in the inputs/outputs of each layer. This data is used to optimize the accuracy of
the final model. This statistic is being used to map the floating-point values into their integer representation,

Page 75 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

(a.k.a quantization). Use high quality calibration data (that represents well the validation dataset and the real-
life scenario) is crucial for obtaining good accuracy. Supported calibration data types are: Numpy array with
shape: [BxHxWxC], NPY file of a Numpy array with shape: [BxHxWxC], directory of Numpy files with each shape:
[HxWxC] and tf.data.Dataset object with expected return value of: [{layer_name: input}, _].

5. Finally, it is necessary to verify the accuracy of the optimized model to validate the process was successful. In
case of large degradation (that doesn’t meet the accuracy requirement), re-try the optimization with increased
optimization level. Optimization and Compression levels allowing the control of the model optimization effort
and the model memory footprint. For quick iterations it is recommended to start with the default setting of the
model optimizer (optimization_level=2, compression_level=1). However, when moving to production, work at
the highest optimization level (optimization_level=4) to achieve optimal accuracy. With regards to compression,
users should increase it when the overall throughput/latency of the application is not satisfactory. Note that
increasing compression will have negligible effect on power-consumption so the motivation to work with higher
compression level is mainly due to FPS considerations. To verify the accuracy of the quantized model, it is
recommended to use the SDK_QUANTIZED emulator:

import tensorflow as tf
from hailo_sdk_client import ClientRunner, InferenceContext

runner = ClientRunner(har=model_path)
with runner.infer_context(InferenceContext.SDK_QUANTIZED) as ctx:
output = runner.infer(ctx, input_data_modified)

Note: Due to known installation issues with Hailo’s Docker, GPU usage is possible only when Tensorflow packages
are imported before any of Hailo’s DFC packages (e.g. client runner, inference context). See code examples above.

A diagram of the advanced optimization flow is presented below.

Note: Familiarity with the runner states diagram is important for understanding the following diagram.

Note: If problems are encountered with VRAM allocation during stages other than Adaround, it is possible attempt
to resolve the issue by disabling the memory growth flag. To do this, set the following environment variable:

HAILO_SET_MEMORY_GROWTH=false

By doing so, the default memory allocation method for tensorflow GPU will be modified, and the entire VRAM will be
allocated and managed internally.

Additionally, if tensorflow is imported, please make sure the SDK is imported before tensorflow is used.

Model Optimization Flavors

The optimize() method serves as the model optimization API. This API requires sample dataset (typically >=
1024), which is used to collect statistics. After the statistics are collected, they are used to quantize the weights
and activations, that is, map the floating point values into integer representation. Hailo’s quantization scheme uses
uniformly distributed bins and optimizes for the best trade-off between range and precision.

Before calling the optimize() API, you might call load_model_script() to load a model script (.alls file) that
includes commands that modify the model, affect the basic quantization flow and additional algorithms to improve
the accuracy and optimize the running time.

To control the optimization grade, it is recommended to set the optimization_level argument with the
model_optimization_flavor command, which will obtain values of 0-4 and control which quantization algorithms will
be enabled. Using higher optimization level means the model optimization tool will use more advanced algorithms
which expected to get better accuracy but will take longer to run. Note that optimization levels 2, 4 require at least
1024 images to run and optimization level 3 requires 256. The default setting is optimization_level=2 unless GPU is

Page 76 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Compile & run on the Hailo
hardware

5

Accuracy
good enough?

Yes

Use optimization
commands on model

script to affect
optimization flow

No

Load model script

Translate (parse) an ONNX
or TF model

Hailo Model state
(floating -point)

2

Double check input and
output formats, considering
modification commands on

model script

Validate accuracy in full
precision using

SdkFPOptimized emulator

Validate accuracy of the
optimized model using

SdkPartialNumeric emulator

Accuracy
good enough? No

Yes

Optimize
(GPU recommended)

Quantized model
state (uint)

Calibration dateset
(recommended > 1024)

Optimize Full Precision
(to apply modifications)

FP Optimized state
(floating-point)

Validate accuracy in
full precision using

SdkNative emulator

Accuracy
good enough? No

Double check input
and output formatsYes

1

3

4

Model
Script

Figure 7. Block diagram of the advanced model optimization flow using Python APIs

Page 77 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

not available, or the dataset is not large enough (less than 1024). For reference, those are the expected running times
for optimizing ResNet-v1-50 with compression_level=4 using Nvidia A4000 GPU:

• optimization_level=0: 59s

• optimization_level=1: 206s

• optimization_level=2: 256s

• optimization_level=3: 2828s

• optimization_level=4: 11002s

To control the compression degree, use the compression_level argument through the model_optimization_flavor com-
mand, which will obtain values of 0-5 and control the percentage of weights that are quantized to 4-bits (default is
using 8-bit precision for weights quantization). Using higher compression level means the compression will be more
aggressive and accuracy may be degraded. To recover the accuracy loss, it is recommended to use a higher optimiza-
tion level as well. High compression rate improves the fps especially for large networks (more than 20M parameters)
or when used in a pipeline. The default setting is Compression_level=1.

Note: The algorithms that compose each optimization level are expected to change in future versions. To see the
current algorithms in use refer to model_optimization_flavor command description

The table below displays the results of applying different choices of optimization/compression levels on common CV
models.

Table 12. An example of the degradations for the RegNetX-800MF model over various flavor settings. Reported degra-
dations are Top-1 scores over the ImageNet-1K dataset (validation set of 50k images). Note that the RegNetX-800MF
model is relatively small (defined as having less than 20M parameters), hence there is only one valid compression
level (compression_level=0).

Optimization
Level = 0

Optimization
Level = 1

Optimization
Level = 2

Optimization
Level = 3

Optimization
Level = 4

Compression
Level = 0

0.41 0.16 0.29 - 0.19

Table 13. An example of the degradations for the YOLOv5m model over various flavor settings. Reported degrada-
tions are mAP scores over a validation set of 5k samples from the COCO2017 dataset.

Optimization
Level = 0

Optimization
Level = 1

Optimization
Level = 2

Optimization
Level = 3

Optimization
Level = 4

Compression
Level - 0

4.12 3.35 1.61 - 0.19

Compression
Level = 1

4.12 3.26 2.43 1.91 1.25

Compression
Level = 4

8.61 7.67 4.78 2.50 1.58

Table 14. An example of the degradations for the DeepLab-v3-MobileNet-v2 model over various flavor settings. Re-
ported degradations are mIoU scores over the PASCAL-VOC dataset. Note that the DeepLab-v3-MobileNet-v2 model
is relatively small (defined as having less than 20M parameters), hence there is only one valid compression level
(compression_level=0).

Optimization Level
= 0

Optimization Level
= 1

Optimization Level
= 2

Optimization Level
= 3

Compression
Level = 0

0.72 0.61 1.14 -

Page 78 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Debugging Accuracy

If the quantization accuracy is not sufficient, any of the following methods should be used (after each step, to validate
the accuracy of your model):

1. Make sure there are at least 1024 images in the calibration dataset and machine with a GPU.

2. Validate the accuracy of the model in ~hailo_sdk_common.targets.infer_wrapper.InferenceContext.SDK_FP_OPTIMIZED
emulator to ensure pre and post processing are used correctly. Common pitfalls includes mishandling of
preprocessing (for example, data normalization) or usage of the wrong data type for calibration.

3. Usage of BatchNormalization is crucial to obtain good quantization accuracy because it reduces the activation
ranges throughout the network, and therefore it is highly recommended to use it during training.

4. Run the layer noise analysis tool to identify the source of degradation. For example, using the CLI command:

hailo analyze-noise har_path –data-path data_path

5. If you have used **compression_level**, lower its value (the default is 0). For example, use the following com-
mand in the model script:

model_optimization_flavor(compression_level=1)

6. Configure higher **optimization_level** in the model script, that activates more optimization algorithms and
experiment with different optimization levels. For example:

model_optimization_flavor(optimization_level=4)

7. Configure 16-bit output. Note that using 16-bit output affects the output BW from the Hailo device. For exam-
ple, using the following model script command:

quantization_param(output_layer1, precision_mode=a16_w16)

8. Configure 16-bit on specific layers that are sensitive for quantization. Note that using 16-bit affects the through-
put obtained from the Hailo device. For example, using the following model script command:

quantization_param(conv1, precision_mode=a16_w16)

9. Try to run with activation clipping using the following model script commands:

model_optimization_config(calibration, calibset_size=512), and pre_quantization_optimization(activation_clipping,
layers={*}, mode=percentile, clipping_values=[0.01, 99.99])

10. Use more data and longer optimization process in Finetune, for example:

post_quantization_optimization(finetune, policy=enabled, learning_rate=0.0001, epochs=8, dataset_size=4000)

11. Use different loss type in Finetune, for example:

post_quantization_optimization(finetune, policy=enabled, learning_rate=0.0001, epochs=8, dataset_size=4000,
loss_types=[l2, l2, l2, l2])

12. Use quantization aware training (QAT). For more information see QAT Tutorial.

See also:

The Model Optimization Tutorial which explains how to use the optimization API and the optimization/compression
levels and the Layer Noise Analysis Tutorial which explains how to use the analysis tool.

Page 79 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/abs/1502.03167

Hailo Dataflow Compiler User Guide

5.2.2. Optimization RelatedModel Script Commands

Information about Model scripts is provided here.

The model script is loaded before running the model optimization by using the load_model_script().

The model script supports model modification commands, which are processed on optimize():

model_modification_commands

In addition, the model script supports 5 optimization commands:

1. model_optimization_flavor

2. model_optimization_config

3. quantization_param

4. pre_quantization_optimization

5. post_quantization_optimization

model_modification_commands

The model script supports the following model modification commands:

• input_conversion

• transpose

• normalization

• nms_postprocess

• change_output_activation

• logits_layer

• set_seed

• resize

input_conversion

Adds on-chip conversion of the input tensor.

The conversion could be either a color conversion:

• yuv_to_rgb - which is implemented by the following kernel: [[1.164, 1.164, 1.164], [0, -0.392, 2.017], [1.596,
-0.813, 0]] and bias [-222.912, 135.616, -276.8] terms. Corresponds to cv::COLOR_YUV2RGB in OpenCV termi-
nology.

• yuv_to_bgr - which is implemented by the following kernel: [[1.164, 1.164, 1.164], [2.017, -0.392, 0], [0, -0.813,
1.596]] and bias [-276.8, 135.616, -222.912] terms. Corresponds to cv::COLOR_YUV2BGR in OpenCV terminol-
ogy.

• bgr_to_rgb - which transposes between the R and B channels using an inverse identity matrix as kernel, no bias.
Corresponds to cv2.cvtColor(src, code) where src is a BGR image, and code is cv2.COLOR_BGR2RGB.

• rgb_to_bgr - as the above, transposes between the R and B channels using an inverse identity matrix as kernel,
no bias. Corresponds to cv2.cvtColor(src, code) where src is a RGB image, and code is cv2.COLOR_RGB2BGR.

Note: The input_layer argument is optional. If a layer name is not specified, the conversion will be added after all
input layers.

Page 80 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

rgb_layer = input_conversion(input_layer1, yuv_to_rgb)

number of return values should match the number of inputs of the network
rgb_layer1, rgb_layer2, ... = input_conversion(yuv_to_rgb)

Or a format conversion:

• yuy2_to_hailo_yuv – Converts the YUY2 format, which is used by some cameras, to YUV. This is use-
ful together with the YUV to RGB layer to create a full vision pipeline YUY2 to YUV to RGB. Corresponds to
cv::COLOR_YUV2RGB_YUY2 in OpenCV terminology.

• nv12_to_hailo_yuv – converts the NV12 format, which is used by a growing number of cameras, to YUV
format. This is a useful conversion to be used before the first layer to offload this conversion from the host.

• nv21_to_hailo_yuv – Converts the NV21 format, which is used by some cameras, to YUV.

• i420_to_hailo_yuv – Converts the i420 format, which is used by some cameras, to YUV.

• tf_rgbx_to_hailo_rgb – Converts RGBX to Hailo RGB format.

Note: By default, format conversions will only be part of the compiled model but they won’t be part of the op-
timization process. To include emulation supported format conversions - yuy2_to_yuv, tf_rgbx_to_hailo_rgb and
nv12_to_hailo_yuv in the optimization process, set emulator_support=True inside the command. When setting it to
True, the calibration set should be given in the source format.

conversion won't be part of the optimization
yuv_layer = input_conversion(input_layer2, yuy2_to_hailo_yuv)

conversion will be part of the optimization
yuv_layer = input_conversion(input_layer2, yuy2_to_hailo_yuv, emulator_
↪→support=True)

Or a hybrid conversion :

• yuy2_to_rgb - which is implemented by adding format conversion yuy2_to_yuv and color conversion yuv_to_rgb.

• nv12_to_rgb - which is implemented by adding format conversion nv12_to_yuv and color conversion yuv_to_rgb.

• nv21_to_rgb - which is implemented by adding format conversion nv21_to_yuv and color conversion yuv_to_rgb.

• i420_to_rgb - which is implemented by adding format conversion i420_to_yuv and color conversion yuv_to_rgb.

Note: By default, format conversion is part of the hybrid conversion command it behaves as format conversion, i.e. it
will be part of the compiled model but not part of the optimization process. To include the supported format conver-
sion - yuy2_to_yuv, tf_rgbx_to_hailo_rgb and nv12_to_hailo_yuv in the optimization process, set emulator_support=True
inside the command.

yuy2_to_hailo_yuv conversion won't be part of the optimization
yuy2_to_yuv_layer, yuv_to_rgb_layer = input_conversion(input_layer1, yuy2_to_rgb)

conversion will be part of the optimization
yuy2_to_yuv_layer, yuv_to_rgb_layer = input_conversion(input_layer1, yuy2_to_rgb,�
↪→emulator_support=True)

Page 81 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

transpose

Transposes the whole connected component(s) of the chosen input layer(s), so the network runs transposed on chip
(improves performance in some cases).

Not supported when there are SpaceToDepth (columns to features) or DepthToSpace (features to columns) reshapes
in the network.

HailoRT is responsible for transposing the inputs and outputs on the host side.

transpose(input_layer1) # transposing the connected components corresponding to the�
↪→input layers specified
transpose() # transposing all layers and weights

Note: Transposing the network is not supported when the Depth to Space or Space to Depth layers are used.

normalization

Adds on-chip normalization to the input tensor(s).

norm_layer1 = normalization(mean_array, std_array, input_layer) # adding�
↪→normalization layer with the parameters mean & std after the specified input layer.�
↪→Multiple commands can be used to apply different normalization to each input layer.
norm_layer1, norm_layer2, ... = normalization(mean_array, std_array) # adding�
↪→normalization layers after all input layers. Return value should match the number of�
↪→inputs in the network

nms_postprocess

For more information about NMS post-processing, refer to nms_post_processing.

example for adding SSD NMS with config file, architecture is written without ''.
nms_postprocess('nms_config_file.json', meta_arch=ssd)

There are a few options for using this command. Note that in each option, the architecture name must be provided,
using meta_arch argument.

1. Specify only the architecture name.

• If NMS structure was detected during parsing, an autogenerated config file with the values ex-
tracted from the original model will be used.

• Otherwise, a default config file will be used.

• Layers that come before the post-process are auto-detected.

For example: nms_postprocess(meta_arch=ssd)

2. Specify the architecture name and some of the config arguments.

• If NMS structure was detected during parsing, an autogenerated config file with the values ex-
tracted from the original model will be used, edited by provided arguments.

• Otherwise, a default config file will be used, edited by provided arguments.

• Input layers to post-process will be auto-detected.

• The config arguments that can be set via the command are: nms_scores_th, nms_iou_th, im-
age_dims, classes.

For example: nms_postprocess(meta_arch=yolov5, image_dims=[512, 512], classes=70)

Page 82 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

3. Specify the config json path in addition to architecture name.

• The file provided will be used.

• Please note that when providing the config path, do not provide any of the config argument using
the command, only inside the file.

For example: nms_postprocess(‘config_file_path’, meta_arch=centernet)

The default config files can be found at site­packages/hailo_sdk_client/tools/
core_postprocess/core_postprocess, relatively to the virtual environment where the Dataflow
Compiler is installed:

• default_nms_config_yolov5.json

• default_nms_config_yolov6.json

• default_nms_config_yolox.json

• default_nms_config_yolo8.json

• default_nms_config_centernet.json

• default_nms_config_ssd.json

• default_nms_config_yolov5_seg.json

For available architectures see NMSMetaArchitectures.

Networks with YOLOv5 based post-process, perform bbox decoding and score_threshold filtering on the neural core
and IOU filtering on CPU by default. Networks with SSD/Centernet based post-process, run on the neural core by
default. All other supported post-process architectures run on the CPU by default. Networks with post-process can
be configured manually to run either on neural core or on CPU using the engine argument in the relevant model script
command.

There are three supported modes: nn_core, cpu, auto.

• nn_core which means the NMS post-process will run on the nn-core, currently supported on YOLOv5, SSD
and Centernet.

For example:

nms_postprocess(meta_arch=ssd, engine=nn_core)

• cpu which means the NMS post-process will run on the CPU, currently supported on YOLOv5, YOLOv5 SEG,
YOLOv8, SSD and YOLOX:

For example:

nms_postprocess(meta_arch=yolov5_seg, engine=cpu, image_dims=[512, 512])

• auto currently supported on YOLOv5, performs bbox decoding and score_threshold filtering on the neural
core and IoU filtering on CPU.

For example:

nms_postprocess('config_file_path', meta_arch=yolov5, engine=auto)

Note: When using NMS post-process with the default configuration the nms_scores_th value is 0.3. When using
NMS post-process on CPU with default configuration the nms_iou_th is changed to 0.6.

For performing bbox decoding without NMS use bbox_decoding_only=True.

For example:

nms_postprocess(meta_arch=yolov5, engine=cpu, bbox_decoding_only=True)

Page 83 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

change_output_activation

Changes output layer activation. See the supported activations section for activation types.

change_output_activation(output_layer, activation) # changing activation function�
↪→of specified output layer.
change_output_activation(activation) # changing activation function of all the�
↪→output layers.

logits_layer

Adds logits layer after an output layer. The supported logits layers are Softmax and Argmax.

Softmax layer can be added under the following conditions:

1. The output layer has rank 2.

2. Total number of softmax layers is less than three.

Argmax layer can be added under the following conditions:

1. The output layer has rank 4.

2. The operation is only on the channels dimension

logits_layer1 = logits_layer(output_layer, softmax, 1) # adding logits layer after�
↪→the output layer.
logits_layer1, logits_layer2, ..., = logits_layer(argmax, 3) # adding logits layer�
↪→after all the output layers.

set_seed

Sets the global random seed for python random, numpy and tensorflow libraries, and enables operator determinism
in tensorflow’s backend. Setting the seed ensures reproducibility of quantization results.

Note: When running Finetune algorithm on GPU, tensorflow’s back-propagation operators can’t perform determin-
istic results.

Note: Using tensorflow’s operator determinism comes at the expense of runtime efficiency, it’s recommended to
use this feature for debugging only. For more details please refer to tensorflow’s docs.

set_seed(seed=5)

resize:

Performs resize for the input or output tensor(s). The resize can be applied either on-chip or CPU. The default resize
method used is bilinear interpolation with align_corners=True, half_pixels=False, and engine=nn_core.

The resize limitations are those of resize bilinear as described here. When the resize ratio is high, the compilation
process will be more difficult, as more on-chip memories and sub-clusters are required.

resize1 = resize(conv1, resize_shapes=[256,256]) # resize a single layer
resize1 = resize(conv1, resize_shapes=[256,256], resize_method=bilinear, pixels_
↪→mode=half_pixels, engine=nn_core)
resize1 = resize(conv1, resize_shapes=[256,256], resize_method=nearest_neighbor,�
↪→pixels_mode=disable, engine=cpu) (continues on next page)

Page 84 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://github.com/tensorflow/tensorflow/blob/0db597d0d758aba578783b5bf46c889700a45085/tensorflow/python/framework/config.py#L914

Hailo Dataflow Compiler User Guide

(continued from previous page)

resize1, resize2, ... = resize(resize_shapes=[256,256]) # resize all inputs; return�
↪→value should match the number of inputs of the network
resize1, resize2, ... = resize(resize_shapes=[256,256], engine=cpu)

Note: When using the resize command on an input layer, resize_shapes represents the new input shape of the
network, while using the command on an output layer resize_shapes represents the new output shape of the network

model_optimization_flavor

Configure the model optimization effort by setting compression level and optimization level. The flavor’s
algorithm will behave as default, any algorithm-specific configuration will override the flavor’s default
config

Default values:

• compression_level: 1

• optimization_level: 2 for GPU and 1024 images, 1 for GPU and less than 1024 images, and 0
for CPU only.

• batch_size: check default of each algorithm (usually 8 or 32)

Optimization levels: (might change every version)

• -100 nothing is applied - all default algorithms are switched off

• 0 - Equalization

• 1 - Equalization + Iterative bias correction

• 2 - Equalization + Finetune with 4 epochs & 1024 images

• 3 - Equalization + Adaround with 320 epochs & 256 images on all layers

• 4 - Equalization + Adaround with 320 epochs & 1024 images on all layers

Compression levels: (might change every version)

• 0 - nothing is applied

• 1 - auto 4bit is set to 0.2 if network is large enough (20% of the weights)

• 2 - auto 4bit is set to 0.4 if network is large enough (40% of the weights)

• 3 - auto 4bit is set to 0.6 if network is large enough (60% of the weights)

• 4 - auto 4bit is set to 0.8 if network is large enough (80% of the weights)

• 5 - auto 4bit is set to 1.0 if network is large enough (100% of the weights)

Example commands:

model_optimization_flavor(optimization_level=4)
model_optimization_flavor(compression_level=2)
model_optimization_flavor(optimization_level=2, compression_level=1)
model_optimization_flavor(optimization_level=2, batch_size=4)

Parameters:

Page 85 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

optimization_level int; -
100<=x<=4

(Read
com-
mand
doc)

False Optimization level, higher is better
but longer, improves accuracy

batch_size int; 1<=x (Read
com-
mand
doc)

False Batch size for the algorithms
(adaround, finetune, calibration)

compression_level int; 0<=x<=5 (Read
com-
mand
doc)

False Compression level, higher is better
but increases degradation, improves
fps and latency

model_optimization_config

• compression_params

• negative_exponent

• calibration

• checker_cfg

compression_params

This command controls layers 4-bit and 16-bit quantization. In 4-bit mode, it reduces some layers’ precision mode to
a8_w4. The values (between 0 and 1 inclusive) represent how much of the total weight memory usage you want to
optimize to 4bit. When the value is 1, all the weights will be set to 4bit, when 0, the weights won’t be modified. The
16-bit mode is supported only when setting on the entire network (setting 16-bit value of 1) and without using 4-bit
(setting 4-bit value to 0).

Example command:

Optimize 30% of the total weights to use 4bit mode
model_optimization_config(compression_params, auto_4bit_weights_ratio=0.3)

Note: If you manually set some layers’ precision_mode using quantization_param, the optimization will take it into
account, and won’t set any weight back to 8bit

Note: If you set 16-bit quantization, all layers activations and weights are quantized using 16 bits. In this case, explicit
configuration of layer bias mode is not allowed.

Parameters:

Parameter Values Default Re-
quired

Description

auto_4bit_weights_ratio float; 0<=x<=1 0 False Set a ratio of the model’s weights to
reduce to 4bit

auto_16bit_weights_ratio float 0 False Set a ratio of the model’s weights to
reduce to 16bit

Page 86 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

negative_exponent

During the process of quantization, certain layers may experience bit loss, resulting in reduced precision of the output.
To mitigate this issue, this command can be enabled the addition of extra layers. by setting rank to 1 this layer
introduces a helper layer that mitigates the the bits lost in the quantized output this can cause a decrease on the FPS
of the network. by setting rank to 0 no layer will be introduces and the loss of bits will be delegated to the output.

Example commands:

This will enable the split of conv3 into two layers to not lose precision by a negative�
↪→exponent >= 1
model_optimization_config(negative_exponent, layers=[conv3], split_threshold=1�
↪→rank=1)

Note: This operation does modify the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

split_threshold int; 0<x 2 False Split the layer at the given negative
exponent.

rank int; 0<=x<=1 1 False How many new layers should be
added to the model

auto_clip {allowed,
enabled, dis-
abled}

disabled False Clip the range of the accumulator.

auto_remove_offset {allowed,
enabled, dis-
abled}

disabled False Remove Offsets that are not reach by
the range on calibrations.

calibration

During the quantization process, the model will be inferred with small dataset for calibration purposes. The calibration
can be configured here. (This replaces the calib_num_batch and batch_size arguments in quantize() API)

Example command:

model_optimization_config(calibration, batch_size=4, calibset_size=128)

Parameters:

Parameter Values Default Re-
quired

Description

batch_size int; 0<x 8 False Batch size used during the calibration inference

calibset_size int; 0<x 64 False Data items used during the calibration infer-
ence

Page 87 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

checker_cfg

Checker Config will generate information about the quantization process using the layer analysis tool.

Example commands:

This will disable the algorithm
model_optimization_config(checker_cfg, policy=disabled)

Note: This operation does not modify the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled,
disabled}

enabled False Enable or disable the checker algo-
rithm during the quantization pro-
cess.

dataset_size int; 0<x 16 False Number of images used for profiling.

batch_size int; 0<x None False Uses the calibration batch_size by
default. Number of images used to-
gether in each inference step.

analyze_mode {simple, ad-
vanced}

simple False The analysis mode that will be used
during the algorithm execution (sim-
ple/advanced). Simple only execute
analysis on the fully quantize net,
while advanced also execute layer by
layer analysis. Default is simple.

batch_norm_checker bool True False Set whether the algorithm should
display a batch normalization warn-
ing message when the gathered
layer statistics differ from the ex-
pected distribution. Default is True.

quantization_param

The syntax of each quantization_param command in the script is as follows:

quantization_param(<layer>, <parameter>=<value>)

For example

quantization_param(conv1, bias_mode=double_scale_initialization)

Multiple parameters can be assigned at once, by simply adding more parameter-value couples, for example:

quantization_param(conv1, bias_mode=double_scale_initialization, precision_
↪→mode=a8_w4)

Multiple layers can be assigned at once when using a list of layers:

quantization_param([conv1, conv2], bias_mode=double_scale_initialization,�
↪→precision_mode=a8_w4)

Page 88 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Glob syntax is also supported to change multiple layers at the same time. For example, to change all layers whose
name starts with conv, use:

quantization_param({conv*}, bias_mode=double_scale_initialization)

The available parameters are:

1. bias_mode

2. precision_mode

3. quantization_groups

4. force_range_out

5. max_elementwise_feed_repeat

6. max_bias_feed_repeat

7. null_channels_cutoff_factor

8. output_encoding_vector

bias_mode

Sets the layer’s bias behavior, there are 2 available bias modes. The modes are:

1. single_scale_decomposition when set, the bias is represented by 3 values:
UINT8*INT8*UINT4.

2. double_scale_initialization when set, the layer use 16-bit to represent the bias weight of the
layer

Some layers are 16-bit by default (for example, Depthwise), while others are not. Switching a layer to 16-bit, while
improving quantization, can have a slightly adverse effect on allocation. If a network exhibits degradation due to
quantization, it is strongly recommended to set this parameter for all layers with biases.

All layers that have weights and biases support the double_scale_initialization mode.

Example command:

quantization_param(conv3, bias_mode=double_scale_initialization)

Changed in version 2.8: This parameter was named use_16bit_bias. This name is now deprecated.

Changed in version 3.3: double_scale_initialization is now the default bias mode for multiple layers.

precision_mode

Precision mode sets the bits available for the layers’ weights and activation representation. There are three precision
modes that could be set on the model layers using a model script command:

• a8_w8 - which means 8-bit activations and 8-bit weights. (This is the default)

• a8_w4 - which means 8-bit activations and 4-bit weights. Can be used to reduce memory consumption. Sup-
ported on all layers that have weights. Compression levels automatically assigns 4-bit to layers in the model,
according to the level.

• a16_w16 - set 16-bit activations and weights to improve accuracy results. Supported on three cases:

– On any output node (output_layer_X)

– On any supported node(s), see the list below

– On the full model, in case all its layers are supported (Hailo-8 family only)

Example commands:

Page 89 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

quantization_param(conv3, precision_mode=a8_w4) # A specific 4bit layer
quantization_param(output_layer1, precision_mode=a16_w16) # A specific 16bit output�
↪→layer
quantization_param([conv1, maxpool2], precision_mode=a16_w16) # Multiple 16bit�
↪→layers
model_optimization_config(compression_params, auto_16bit_weights_ratio=1) # Full�
↪→16­bit network, in case all layers are supported

16-bit precision is supported on the following layers:

• Activations

• Average Pooling

• Concat

• Const Input

• Convolution

• Deconvolution

• Depth to Space

• Depthwise Convolution

• Elementwise Add / Sub*

• External Padding

• Feature Shuffle

• Feature Split

• Fully Connected (dense) [its output(s) must also be 16-bit, or model output layers]

• Max Pooling

• Normalization

• Output Layer

• Reduce Max*

• Reduce Sum*

• Resize*

• Reshape

• Shortcut

• Slice

• Space to Depth

Note: Layers with (*) are supported as long as they are not part of a Softmax chain.

Note: It is recommended to use Finetune when using 4-bit weights.

Page 90 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

max_bias_feed_repeat

The range is 1-32 (integer only) and the default value is 32.

This parameter determines the precision of the biases. A lower number will result in higher throughput at the cost
of reduced precision. This parameter can be switched to 1 for all or some layers, in order to see if higher throughput
can be achieved. If this results in high quantization degradation, the source of the degradation should be examined
and this parameter should be increased for that layer.

This parameter is not applicable for layers that use the double_scale_initialization bias mode.

Example command:

quantization_param(conv5, max_bias_feed_repeat=1)

quantization_groups

The range is 1-4 (integer only) and the default value is 1.

This parameter allows splitting weights of a layer into groups and quantizing each separately for greater accuracy.
When using this command, the weights of layers with more than one quantization group are automatically sorted to
improve accuracy.

Using more than one group is supported only by Conv and Dense layers (not by Depthwise or Deconv layers). In
addition, it will not be supported if the layers are of conv-and-add kind or rather the last layer of the model (or last
layers if there are multiple outputs).

Example command:

quantization_param(conv1, quantization_groups=4)

force_range_out

This command forces the specified range to the output of given layers in the quantization process.

The expected value for this parameter is a pair of floats [min, max] value. min<=0; max>=0; min<max. Zero must
be within the specified range.

Example command:

quantization_param(conv1, force_range_out=[0, 1])

max_elementwise_feed_repeat

This command is applicable only for conv-and-add layers. The range is 1-4 (integer only) and the default value is 4.

This parameter determines the precision of the elements in the “add” input of the conv-and-add. A lower number will
result in higher throughput at the cost of reduced precision. For networks with many conv-and-add operations, it is
recommended to switch this parameter to 1 for all conv-and-add layers, to determine if it’s possible to achieve higher
throughput. If this results in high quantization degradation, the source of the degradation should be examined and
this parameter should be increased for that layer.

Example command:

quantization_param(conv5, max_elementwise_feed_repeat=1)

Page 91 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

null_channels_cutoff_factor

This command is applicable only for layers with fused batch normalization. The default value is 1e-4.

This is used to zero-out the weights of the so called “dead-channels”. These are channels whose variance is below a
certain threshold. The low variance is usually a result of the activation function eliminating the results of the layer
(for example, a ReLU activation that zeros negative inputs). The weights are zeroed out to avoid outliers that shift
the dynamic range of the quantization but do not contribute to the results of the network. The variance threshold is
defined by null channels_cutoff_factor * bn_epsilon, where bn_epsilon is the epsilon from
the fused batch normalization of this layer.

Example command:

quantization_param(conv4, null_channels_cutoff_factor=1e­2)

output_encoding_vector

This command changes the last layer’s output format, to include a different multiplacative scale for each feature. It
raises the accuracy of the model in some cases, in the expense of slightly higher CPU utilization, since the output
tensor has to be multiplied with different factor per feature when converting the model outputs back from uint8 or
uint16 to floating point precision (a.k.a dequantization).

This command mostly helps when channels with different ranges are concatenated together (for example, some
features represent class, and others represent scores).

This command is not available on the following cases:

• Output muxing (an internal feature) has to be disabled: allocator_param(enable_muxer=False).

• When the last layer is a Softmax, NMS, or Resize.

• When HailoRT-postprocess is used:

– nms_postprocess model script command when engine‘ is other than nn_core.

– logits_layer model script command.

Example command:

model_optimization_config(globals, output_encoding_vector=enabled)
allocator_param(enable_muxer=False)

pre_quantization_optimization

All the features of this command optimize the model before the quantization process. Some of these commands
modify the model structure, and occur before the rest of the commands.

The algorithms are triggered in the following order:

• dead_channels_removal

• zero_static_channels

• se_optimization

• equalization

• equalization per-layer

• dead_layers_removal

• weights_clipping

• activation_clipping

• ew_add_fusing

Page 92 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• layer_decomposition

• smart_softmax_stats

• defuse

• resolution_reduction

• resolution_reduction per-layer

• global_avgpool_reduction

• add_shortcut_layer

• matmul_correction

dead_channels_removal

Dead channels removal is channel pruning, which removes from the model any layer with both null weights and
activation output. This might reduce memory consumption and improve inference time

Example commands:

This will enable the algorithm
pre_quantization_optimization(dead_channels_removal, policy=enabled)

Note: This operation will modify the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled, dis-
abled}

disabled True Enable or disable the dead channels removal al-
gorithm

zero_static_channels

Zero static channels will zero out the weights of channels that have zero variances to improve quantization.

Example commands:

This will enable the algorithm
pre_quantization_optimization(zero_static_channels, policy=enabled)

Note: This operation does not modify the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled, dis-
abled}

enabled True Enable or disable the zero static channels algo-
rithm

eps float; 0<=x 1e-07 False Threshold value to zero channels for the zero
static channels algorithm

Page 93 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

se_optimization

This feature can modify the Squeeze and Excite block to run more efficiently on the Hailo chip. A more detailed
explanation of the TSE algorithm can be found here https://arxiv.org/pdf/2107.02145.pdf

Example commands:

Apply TSE to the first 3 S&E blocks with tile height of 7
pre_quantization_optimization(se_optimization, method=tse, mode=sequential,�
↪→count=3, tile_height=7)

Apply TSE to the first 3 S&E blocks with tile height of 9 to the 1st block, 7 to the 2nd�
↪→and 5 to the 3rd
pre_quantization_optimization(se_optimization, method=tse, mode=sequential,�
↪→count=3, tile_height=[9, 7, 5])

Apply TSE to S&E blocks that start with avgpool1 and avgpool2 layers, with tile height�
↪→of 7, 5 accordingly
pre_quantization_optimization(se_optimization, method=tse, mode=custom,�
↪→layers=[avgpool1, avgpool2], tile_height=[7, 5])

Note: This operation will modify the structure of the model’s graph

Note: An in-depth explanation of the TSE algorithm - https://arxiv.org/pdf/2107.02145.pdf

Parameters:

Parameter Values Default Re-
quired

Description

method {tse} tse True Algorithm for Squeeze and Excite block opti-
mization

mode {sequential,
custom, dis-
abled}

disabled True How to apply the algorithm on the model

layers List of {str} None False Required when mode=custom. Set which SE
blocks to optimize based on the global avgpool
of the block

count int; 0<x None False Required when mode=sequential. Set how
many SE blocks to optimize

tile_height (int; 0<x) or
(List of {int;
0<x})

7 False Set tile height for the TSE. When list is given, it
should match the layers count / the count argu-
ment. The tile has to divide the height without
residue

Page 94 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/pdf/2107.02145.pdf
https://arxiv.org/pdf/2107.02145.pdf

Hailo Dataflow Compiler User Guide

equalization

This sub-command allows configuring the global equalization behavior during the pre-quantization process, this com-
mand replaces the old equalize parameter from quantize() API

Example command:

pre_quantization_optimization(equalization, policy=disabled)

Note: An in-depth explanation of the equalization algorithm - https://arxiv.org/pdf/1902.01917.pdf

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled, dis-
abled}

enabled False Enable or disable the equalization algorithm

equalization per-layer

This sub-command allows configuring the equalization behavior per layer. Allowed policy means the behavior derives
from the algorithm config.

Example commands:

Disable equalization on conv1 and conv2
pre_quantization_optimization(equalization, layers=[conv1, conv2],�
↪→policy=disabled)

Disable equalization on all conv layers.
pre_quantization_optimization(equalization, layers={conv*}, policy=disabled)

Note:

• Not all layers support equalization

• Layers are related to other

• Disabling 1 layer, disables all related layers

• Enabling 1 layer won’t enable the related layers (it has to be done manually)

Parameters:

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

allowed False Set equalization behavior to given layer. (de-
fault is allowed)

Page 95 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/pdf/1902.01917.pdf

Hailo Dataflow Compiler User Guide

dead_layers_removal

This sub-command allows configuring the dead layers removal

Example command:

pre_quantization_optimization(dead_layers_removal, policy=disabled)

Parameters:

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

enabled False Enable or disable the dead layers removal algo-
rithm

vali-
date_change

{allowed,
enabled,
disabled}

enabled False iF enabled, the algorithm will validate that the
removal of the layer by comparing the output
of the network before and after the removal

weights_clipping

This command allows changing this behavior for selected layers and applying weights clipping when running the
quantization API. This command may be useful in order to decrease quantization related degradation in case of outlier
weight values. It is only applicable to the layers that have weights.

• disabled mode doesn’t take clipping values, and disables any weights clipping mode previously set to the
layer.

• manual mode uses the clipping values as given.

• percentile mode calculates layer-wise percentiles (clipping values are percentiles 0 to 100).

• mmse mode doesn’t take clipping values, and uses Minimum Mean Square Estimators to clip the weights of the
layer.

• mmse_if4b similar to mmse, when the layer uses 4bit weights, and disables clipping when it uses 8-bit
weights. (This is the default)

Example commands:

pre_quantization_optimization(weights_clipping, layers=[conv2], mode=manual,�
↪→clipping_values=[­0.1, 0.8])
pre_quantization_optimization(weights_clipping, layers=[conv3], mode=percentile,�
↪→clipping_values=[1.0, 99.0])
pre_quantization_optimization(weights_clipping, layers={conv*}, mode=mmse)
pre_quantization_optimization(weights_clipping, layers=[conv3, conv4], mode=mmse_
↪→if4b)
pre_quantization_optimization(weights_clipping, layers={conv*}, mode=disabled)

Note: The dynamic range of the weights is symmetric even if the clipping values are not symmetric.

Parameters:

Page 96 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

mode {disabled,
manual, per-
centile, mmse,
mmse_if4b}

mmse_if4b True Mode of operation, described above

clipping_values [float, float] None False Clip value, required when mode is percentile or
manual

activation_clipping

By default, the model optimization does not clip layers’ activations during quantization. This command can be used
to change this behavior for selected layers and apply activation clipping when running the quantization API. This
command may be useful in order to decrease quantization related degradation in case of outlier activation values.

• disabledmode doesn’t take clipping values, and disables any activation clipping mode previously set to the
layer (This is the default).

• manual mode uses the clipping values as given.

• percentile mode calculates layer-wise percentiles (clipping values are percentiles 0 to 100).

Note: Percentiles based activation clipping requires several iterations of statistics collection, so quantization might
take a longer time to finish.

Example commands:

pre_quantization_optimization(activation_clipping, layers=[conv1], mode=manual,�
↪→clipping_values=[0.188, 1.3332])
pre_quantization_optimization(activation_clipping, layers=[conv1, conv2],�
↪→mode=percentile, clipping_values=[0.5, 99.5])
pre_quantization_optimization(activation_clipping, layers={conv*}, mode=disabled)

Parameters:

Parameter Values Default Re-
quired

Description

mode {disabled,
manual, per-
centile}

disabled True Mode of operation, described above

clipping_values [float, float] None False Clip value, required when mode is percentile or
manual

recollect_stats bool False False Indicates whether stats should be collected af-
ter clip

Page 97 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

ew_add_fusing

When EW add fusing is enabled, ew add layers will be fused into conv and add layers. Layers with incompatible
precision modes won’t be fused.

Example commands:

This will enable the algorithm
pre_quantization_optimization(ew_add_fusing, policy=enabled)

Note: This operation modifies the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled,
disabled}

enabled True Enable or disable the ew add fusing
optimization

infusible_ew_add_type {conv, ew_add} ew_add False Decide whether to create a conv or a
standalone ew add layer fusing is not
possible

layer_decomposition

This sub commands allows toggling layers to decomposition mode, which means 16-bit layers will be implemented
with 8-bit layers.

Example commands:

This will decompose a specific layer to increase its precision.
pre_quantization_optimization(layer_decomposition, layers=[conv1],�
↪→policy=disabled)
pre_quantization_optimization(layer_decomposition, layers=[conv17, conv18],�
↪→policy=enabled)

Parameters:

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

allowed False None

smart_softmax_stats

SmartSoftmaxConfig is an algorithm that collects the stats on a softmax block in an efficient way Example commands:

This will enable the algorithm
pre_quantization_optimization(smart_softmax_stats, policy=enabled)

Parameters:

Page 98 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

enabled False Enable disable or allow the algorithm

defuse

This command allows defusing layer according to the defuse type:

INPUT FEATURES

Defuse input features for a selected dense or conv layer to a selected number of splits. It can also be used to disable
defusing of a layer. Example commands:

pre_quantization_optimization(defuse, layers=fc1, num_splits=2, defuse_type=INPUT_
↪→FEATURES)
this will disable the fusing of fc2
pre_quantization_optimization(defuse, layers=fc2, num_splits=1, defuse_type=INPUT_
↪→FEATURES)

Note: num_splits might be overwritten by a larger number due to hw limitations.

MHA

Allows defusing multi-head attention block, represented by its first matmul, to a selected number of splits.

Example commands:

pre_quantization_optimization(defuse, layers=matmul1, num_splits=2, defuse_
↪→type=MHA)

Parameters:

Parameter Values Default Re-
quired

Description

num_splits int None False number of splits required

defuse_type {in-
put_features,
mha}

None False defuse type

resolution_reduction

Reduce the model resolution in all input layers in order to optimize the model more efficiently. Marginally affects
accuracy. Not supported on models that contain Fully-connected, Matmul an Cross-correlation layers, or when the
resolution is too small.

Example commands:

This will enable the algorithm, optimizing over an input shape of [128, 128]
pre_quantization_optimization(resolution_reduction, shape=[128, 128])

Note: This operation doesn’t modify the structure of the model’s graph

Page 99 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameters:

Parameter Values Default Re-
quired

Description

shape [int, int] None False The shape to reduce the model resolution to.

interpolation {disabled,
bilinear}

bilinear False Use/disable interpolation to reduce the resolu-
tion of the model.

resolution_reduction per-layer

Sub-command for configuring resolution reduction per input layer, affecting its connected component. Reduce the
resolution in order to optimize more efficiently. Marginally affects accuracy. Not supported when containing Fully-
connected, Matmul an Cross-correlation layers, or when the resolution is too small.

Example commands:

This will enable the algorithm for input_layer1 connected component, optimizing over�
↪→an input shape of [128, 128]
pre_quantization_optimization(resolution_reduction, layers=input_layer1,�
↪→shape=[128, 128])

Note: This operation doesn’t modify the structure of the model’s graph

Parameters:

Parameter Values Default Re-
quired

Description

shape [int, int] None False The shape to reduce the component resolution
to.

interpolation {disabled,
bilinear}

bilinear False Use/disable interpolation to reduce the resolu-
tion of the model.

global_avgpool_reduction

This command allows reducing the spatial dimensions for global avgpool layers using additional avgpool layer. The
kernel size of the added avgpool layer will be [1, h // division_factors[0], w // division_factors[1], 1]

pre_quantization_optimization(global_avgpool_reduction, layers=avgpool1, division_
↪→factors=[4, 4])
this will disable the reduction of avgpool1
pre_quantization_optimization(global_avgpool_reduction, layers=avgpool1, division_
↪→factors=[1, 1])

Parameters:

Parameter Values Default Re-
quired

Description

division_factors [int, int] None False division of the kernel height and width

Page 100 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

add_shortcut_layer

Adds an activation layer between “layer” and “target” removes original edge between, activation is linear (by default)
before : layer -> target after : layer -> act -> target

Example commands:

Adds activation layer (linear) between conv8 and conv10
pre_quantization_optimization(add_shortcut_layer, layers=conv8, target=conv10)

Adds activation layer (linear) from conv3 to conv4 and to conv5
pre_quantization_optimization(add_shortcut_layer, layers=conv3, target=[conv4,�
↪→conv5])

Parameters:

Parameter Values Default Re-
quired

Description

target (str) or ([]) None False None

name str None False Name of added shortcut layer. defualts to con-
catination of layer-target

activation str linear False None

matmul_correction

docstring pre_quantization_optimization(matmul_correction, layers=matmul1, correction_type=zp_comp_weights)
pre_quantization_optimization(matmul_correction, layers=[matmul2,matmul4], correction_type=zp_comp_block)

Parameters:

Parameter Values Default Re-
quired

Description

correction_type str zp_comp_weightsFalse Type of correction to apply. ‘zp_comp_weights’
or ‘zp_comp_block’

post_quantization_optimization

All the features of this command optimize the model after the quantization process.

post_quantization_optimization(<feature>, <**kwargs>)

The features of this command are:

• bias_correction

• bias_correction per-layer

• finetune

• adaround

• adaround per-layer

• mix_precision_search

Page 101 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

bias_correction

This sub-command allows configuring the global bias correction behavior during the post-quantization process, this
command replaces the old ibc parameter from quantize() API

Example command:

This will enable the IBC during the post­quantization
post_quantization_optimization(bias_correction, policy=enabled)

Note: An in-depth explanation of the IBC algorithm - https://arxiv.org/pdf/1906.03193.pdf

Note: Bias correction is recommended when the model contains small kernels or depth-wise layers

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled,
disabled}

disabled False Enable or disable the bias correction
algorithm. When Optimization Level
>= 1, could be enabled by the default
policy.

cache_compression {enabled,
disabled}

disabled False Enable or disable the compression
of layer results when cached to disk
(note that allowed will default to dis-
abled).

bias_correction per-layer

This sub-command allows enabling or disabling the Iterative Bias Correction (IBC) algorithm on a per-layer basis.
Allowed policy means the behavior derives from the algorithm config

Example commands:

This will enable IBC for a specific layer
post_quantization_optimization(bias_correction, layers=[conv1], policy=enabled)

This will disable IBC for conv layers and enable for the other layers
post_quantization_optimization(bias_correction, policy=enabled)
post_quantization_optimization(bias_correction, layers={conv*}, policy=disabled)

Parameters:

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

allowed False Set bias correction behavior to given layer. (de-
fault is allowed)

Page 102 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://arxiv.org/pdf/1906.03193.pdf

Hailo Dataflow Compiler User Guide

finetune

This sub-command enabled knowledge distillation based fine-tuning of the quantized graph.

Example commands:

enable fine­tune with default configuration
post_quantization_optimization(finetune)

enable fine­tune with a larger dataset
post_quantization_optimization(finetune, dataset_size=4096)

Parameters:

Page 103 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

policy {enabled, dis-
abled}

disabled True Enable or disable finetune training. When Op-
timization Level >= 1, could be enabled by the
default policy.

dataset_size int; 0<x 1024 False Number of images used for training; Exception
is thrown if the supplied calibration set data
stream falls short of that.

batch_size int; 0<x None False Uses the calibration batch_size by default.
Number of images used together in each train-
ing step; driven by GPU memory constraints
(may need to be reduced to meet them) but also
by the algorithmic impact opposite to that of
learning_rate.

epochs int; 0<=x 4 False Epochs of training

learning_rate float None False The base learning rate used for the schedule cal-
culation (e.g., starting point for the decay). de-
fault value is 0.0002 / 8 * batch_size. Main pa-
rameter to experiment with; start from small
values for architectures substantially different
from well-performing zoo examples, to ensure
convergence.

def_loss_type {ce, l2, l2rel,
cosine}

l2rel False The default loss type to use if loss_types is
not given

loss_layer_names List of {str} None False Names of layers to be used for teacher-student
losses. Names to be given in Hailo HN notation,
s.a. conv20, fc1, etc. Default: the output nodes
of the net (the part described by the HN)

loss_types List of {{ce, l2,
l2rel, cosine}}

None False (Same length as loss_layer_names) The teacher-
student bi-variate loss function types to
apply on the native and numeric outputs
of the respective loss layers specified by-
loss_layer_names. For example, ce (stand-
ing for ‘cross-entropy’) is typically used
for the classification head(s). Default: the
def_loss_type

loss_factors List of {float} None False (Same length as loss_layer_names) defined bi-
variate functions on native/numeric tensors
produced by respective loss_layer_names , to
arrive at the total loss. Default to 1 for all mem-
bers.

native_layers List of {str} [] False Don’t quantize given layers during training

Parameters (cont.):

Page 104 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

native_activations {allowed,
enabled, dis-
abled}

disabled False Keep activations native during train-
ing.

val_images int; 0<=x 4096 False Number of held-up/validation im-
ages for evaluation between epochs.

val_batch_size int; 0<=x 128 False Batch size for the inter-epoch valida-
tion.

stop_gradient_at_loss bool False False Add stop gradient after each loss
layer.

force_pruning bool True False if true the finetune will force zero
weights to stay zeros

Optimizer {adam, sgd,
momentum,
rmsprop}

adam False set to ‘sgd’ to use simple Momentum,
otherwise Adam will be used.

Advanced parameters:

Parameter Values Default Re-
quired

Description

lay-
ers_to_freeze

List of {str} [] False Freeze (don’t modify weights&biases for) any
layer whose name includes one of this list as
a substring. As such, this arg can be used
to freeze whole layer types/groups (e.g. pass
“conv” to freeze all convolutional).

lr_schedule_type {co-
sine_restarts,
exponential,
constant}

co-
sine_restarts

False Functional form of the learning rate decay
within “decay period” - cosine decay to zero (de-
fault), exponential smooth or staircase

decay_rate float 0.5 False Decay factor of the learning rate at a beginning
of “decay period”, from one to the next one. In
default case of cosine restarts, the factor of the
rate to which learning rate is restarted next time
vs. the previous time.

decay_epochs int; 0<=x 1 False Duration of the “decay period” in epochs. In
the default case of cosine restarts, rate decays
to zero (with cosine functional form) across this
period, to be then restarted for the next period.

warmup_epochs int; 0<=x 1 False Duration of warmup period, in epochs, ap-
plied before the starting the main schedule (e.g.
cosine-restarts).

warmup_lr float None False Constant learning rate to be applied during the
warmup period. Defaults to 1/4 the base learn-
ing rate.

bias_only bool False False train only biases (freeze weights).

optimizer {adam, sgd,
momentum,
rmsprop}

adam False set to ‘sgd’ to use simple Momentum, otherwise
Adam will be used.

Page 105 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

adaround

Adaround algorithm optimizes layers’ quantization by training the rounding of the kernel layer-by-layer. To enable it,
use high optimization_level (>=3), or use the explicit command:

post_quantization_optimization(adaround, policy=enabled)

It is used by the highest optimization level to recover any degradation caused by quantization, and as such, it is time
consuming and requires strong system in order to run.

To reduce some of the memory usage of the algorithm, it is recommended to:

• Ensure dali package is installed

– For example: pip install –extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-
cuda110 nvidia-dali-tf-plugin-cuda110

– DALI is an external package which is being used by AdaRound algorithm to accelerate the running time
(see warning raised during the run for more information)

• Use a lower batch size

– For example, using the alls command: post_quantization_optimization(adaround, policy=enabled,
batch_size=8)

– Lowering the batch size can reduce the RAM memory consumption but will increase the running time
(default is 32)

• Enabled/ disabled cache_compression

– For example, the alls command: post_quantization_optimization(adaround, cache_compression=enabled,
policy=enabled) enables cache compression.

– Enables compression on the disk to reduce disk space usage at the expanse of increased running time
(default is disabled).

• Use smaller dataset_size

– For example, using the alls command: post_quantization_optimization(adaround, policy=enabled,
dataset_size=256)

– Using a smaller dataset for Adaround would reduce the memory consumption but might affect the final
accuracy (default is 1024)

• Disable bias training

– For example, using the alls command: post_quantization_optimization(adaround, policy=enabled,
train_bias=False)

– Disabling bias training can help to reduce running time but might affect the final accuracy (default is true)

• Reduce the number of epochs

– For example, using the alls command: post_quantization_optimization(adaround, policy=enabled,
epochs=100)

– Reducing the number of epochs can help to reduce the running time of the algorithm but might affect
the final accuracy (default is 320)

Parameters:

Page 106 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

policy {enabled,
disabled}

disabled False Enable or disable the adaround algo-
rithm. When Optimization Level >=
1, could be enabled by the default
policy.

batch_size int; 0<x 32 False batch size of the ada round algo-
rithm

dataset_size int; 0<x 1024 False Data samples for adaptive round al-
gorithm

epochs int; 0<x 320 False Number of train epochs

warmup float; 0<=x<=1 0.2 False Ratio of warmup epochs out of
epochs

weight float; 0<x 0.01 False Round regularize weight

train_bias bool True False Whether to train bias as well or not
(will apply bias correction if layer is
not trained)

bias_correction_count int 64 False Data count for bias correction

mode {train_4bit,
train_all}

train_4bit False default train behavior

cache_compression {enabled,
disabled}

disabled False Enable or disable the compression
of layer results when cached to disk
(note that allowed will default to dis-
abled).

Advanced parameters:

Parameter Values Default Re-
quired

Description

b_range [float, float] [20, 2] False Max, min for temperature decay

decay_start float; 0<=x<=1 0 False Ratio of round train without round regulariza-
tion decay (b)

adaround per-layer

This sub commands allow toggling layers in the adaround algorithm individually

Example commands:

This will enable AdaRound for a specific layer
post_quantization_optimization(adaround, layers=[conv1], policy=disabled)
post_quantization_optimization(adaround, layers=[conv17, conv18], policy=enabled)

Parameters:

Page 107 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Parameter Values Default Re-
quired

Description

policy {allowed,
enabled,
disabled}

allowed False None

epochs int None False Amount of train epochs for a specific layer

weight float; 0<x None False Weight of round regularization

b_range [float, float] None False Temperature decay range

decay_start float; 0<=x<=1 None False Ratio of round train without round regulariza-
tion decay (b)

train_bias bool None False Toggle bias training

warmup float; 0<=x<=1 None False Ratio of warmup epochs out of epochs

dataset_size int; 0<x None False Data samples count for the train stage of the
specified layer

batch_size int; 0<x None False Batch size for train / infer of a layer

mix_precision_search

This algorithm aims to identify the optimal precision configuration for a model by utilizing the signal to noise ratio
(SNR). SNR quantifies the extent to which a signal is corrupted by noise. In this context, it aids in determining the trade-
off between the compression applied on operations and the error (or noise) introduced as a result of this compression.

Parameters:

Parameter Values Default Re-
quired

Description

policy {enabled,
disabled}

disabled False Enable or disable

dataset_size int; 0<x 16 False Number of images used for profiling.

batch_size int; 0<x 8 False Uses the calibration batch_size by
default. Number of images used to-
gether in each inference step.

snr_cap int; 0<x 140 False The maximum SNR value to be con-
sidered in the search.

compresions_markers List of {float} [0.5, 0.6,
0.7, 0.8,
0.9, 1.0,
1.2]

False This will be the compresion markers

optimizer {linear, pareto} linear False Linear, Pareto

output_regulizer {harmony} harmony False What function will be use to regulate
the output

comprecision_metric {macs, bops,
weighs}

bops False None

Page 108 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.3. Model Compilation

5.3.1. Basic Compilation Flow

For Inference Using TAPPAS orWith Native HailoRT API

Calling compile() compiles the model without loading it to the device returning a binary that contains the com-
piled model, a HEF file.

Note: The default compilation target is Hailo-8. To compile for different architecture (Hailo-8R for example), use
hw_arch='hailo8r' as a parameter to the translation phase. For example see the tutorial referenced on the
next note. Hailo-15 uses hw_arch='hailo15h'.

See also:

The Compilation Tutorial shows how to use the compile() API.

For Inference using ONNX Runtime

After compiling a model, as described in the previous section, that originated from an ONNX model one may choose
to extract a new ONNX model that contains the entire network in the original model, with the nodes segmented by
the start and end note arguments, replaced by the compiled HEF, by calling get_hailo_runtime_model()
. This is required if you wish to run inference using OnnxRT with HailoRT.

The CLI: hailo har-onnx-rt COMPILED-HAR-FILE can also be used.

This feature is currently in preview, with the following limitations:

• The validated opset versions are 8 and 11-17.

• The model needs to be dividable to three sections:

– Pre-processing, which connects only to the Main model

– Main model, which connects only to the Post-processing

– Post-processing

• The start_nodes will completely separate the pre-processing from the Main model. No connections from the
pre-processing are allowed into the main model, unless they are marked as start_nodes.

• The end_nodes need to separate the main model from the post-processing completely.

get_hailo_runtime_model() returns an ONNX model, that you can either pass directly to an ONNXRT
session, or first save to a file and then load unto a session.

hef = runner.compile() # the returned HEF is not needed when working with ONNXRT
onnx_model = runner.get_hailo_runtime_model() # only possible on a compiled model
onnx_file = onnx.save(onnx_model , onnx_file_path) # save model to file

See also:

The Parsing Tutorial shows how to load a network from an existing model and setting the start and end note argu-
ments.

More information on using OnnxRT with HailoRT is available here.

Changed in version 3.9: Added context switch support using an allocation script command. The context switch mech-
anism allows to run a big model by automatically switching between several contexts that together constitute the full
model.

Page 109 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://github.com/hailo-ai/onnxruntime
https://github.com/hailo-ai/onnxruntime

Hailo Dataflow Compiler User Guide

For Inference with Python Using TensorFlow

First, to get a runner loaded with compiled model, use one of the options: calling compile(), loading a compiled
HAR using load_har(), or setting the HEF using hef().

To run inference on the model, enter the context manager infer_context() and call infer() to get the
results.

Note: Inference using the TensorFlow inference is not yet supported on the Hailo-15 platform.

5.3.2. Compilation RelatedModel Script Commands

Information about Model scripts is provided here.

The compilation related model script commands affect the resources allocation stage of the compilation. Except for
the recommended Performance Mode command, most of these commands are for advanced and edge cases, as the
Dataflow Compiler already maximizes the performance by taking many factors into account.

Note: This section uses terminology that is related to the Hailo neural core. Full description of the core architecture
is not in the scope of this guide.

Usage

The script is a separate file which can be given to theload_model_script()method of theClientRunner
class.

For example:

client_runner.load_model_script('x.alls')
compiled_model = client_runner.compile()

Automatic Model Script

After the compilation process, in addition to the binary .hef file, the compiled HAR (Hailo ARchive) file is created. This
HAR file contains the final compilation results, as well as the automatic model script (.auto.alls) file, that contains
the exact instructions for the compiler for creating the same binary file (for the specific Dataflow Compiler version).
This model script can be used to compile the model again (from the corresponding quantized HAR file), for a quick
compilation.

Extraction of the automatic model script out of the compiled HAR file is done with the command:

hailo har extract <COMPILED_HAR_PATH> ­­auto­model­script­path
auto_model_script_file.alls.

The extracted model script can be used in this manner:

hailo compiler <QUANTIZED_HAR_PATH> ­­model­script auto_model_script_file.
alls.

Page 110 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Context Switch Parameters

Definition

context_switch_param(param=value)

Example

context_switch_param(mode=enabled)

Description This command modifies context switch policy and sets several parameters related to it:

• mode – Context switch mode. Set to enabled to enable context switch: Automatic partition of the
given model to several contexts will be applied. Set to disabled to disable context switch. Set to
allowed to let the compiler decide if multi context is required. Defaults to allowed.

Allocator Parameters

Definition

allocator_param(param=value)

Example

allocator_param(automatic_ddr=False)

Description This sets several allocation parameters described below:

• timeout – Compilation timeout for the whole run. By default, the timeout is calculated dynamically
based on the model size. The timeout is in seconds by default. Can be given a postfix of ‘s’, ‘m’, or ‘h’ for
seconds, minutes or hours respectively. e.g. timeout=3h will result to 3 hours.

• automatic_ddr – when enabled, DDR portals that buffer data in the host’s RAM over PCIe are added
automatically when required. DDR portals are added when the data needed to be buffered on some
network edge exceeds a threshold. In addition, DDR portal is added only when there are enough re-
sources on-chip to accommodate it. Defaults to True. Set to False to ensure the HEF compatibility to
platforms that don’t support it, such as Ethernet based platforms.

• automatic_reshapes – When enabled, Format Conversion (Reshape) layers might be added to
networks boundary inputs and outputs. They will be added when supported, and when we have enough
resources on-chip to accommodate these functions. When disabled, format conversion layers won’t be
added to boundary inputs and outputs. on chip. Defaults to allowed (compiler’s decision to enable or
disable).

• merge_min_layer_utilization – Threshold of minimum utilization of the ‘control’ resource,
to start the layer auto merger. Auto-merger will try to optimize on-chip implementation by sharing re-
sources between layers, to reach this control threshold. Auto-merger will not fail if target utilization can-
not be reached.

Resource Calculation Flow Parameters

Definition

resources_param(param=value)

Example

resources_param(strategy=greedy, max_control_utilization=0.9, max_
↪→compute_utilization=0.8)
context0.resources_param(max_utilization=0.25)

Page 111 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Description This sets several resources calculation flow parameters described below.

• strategy – Resources calculation strategy. When set to greedy, adding more resources
to the slowest layers iteratively (Maximum FPS search), to reach the highest possible network
FPS (per context). Defaults to greedy.

• max_control_utilization – Number between 0.0 and 1.2. Threshold for greedy
strategy. Maximum-FPS search will be stopped when the overall control resources on-chip
exceeds the given threshold (per context). Defaults to 0.75.

• max_compute_utilization – Number between 0.0 and 1.0. Threshold for greedy
strategy. Maximum-FPS search will be stopped when the overall compute resources on-chip
exceeds the given threshold (per context). Defaults to 0.75.

• max_memory_utilization – Number between 0.0 and 1.0. Threshold for greedy
strategy. Maximum-FPS search will be stopped when the overall weights-memory resources
on-chip exceeds the given threshold. Defaults to 0.75.

• max_utilization – Number between 0.0 and 1.0. Threshold for greedy strategy.
Maximum-FPS search will be stopped when on-chip utilization of any resource (control, com-
pute, memory) exceeds the given threshold. The parameter overrides default thresholds but
not the user provided thresholds specified above.

Two formats are supported – the first one affects all contexts, and the second one only affects the
chosen context (see example #2).

Place

Definition

place(cluster_number, layers)

Example

place(2, [layer, layer2])

Description This points the allocator to place layers in a specific cluster_number. Layers which are not in-
cluded in any place command, will be assigned to a cluster by the Allocator automatically.

Shortcut

Definition

shortcut(layer_from, layers_to)

Examples

shortcut1 = shortcut(conv1, conv2)
shortcut2 = shortcut(conv5, [batch_norm2, batch_norm3])

Description This command adds a shortcut layer between directly connected layers. The layers_to parameter
can be a single layer or a list of layers. The shortcut layer copies its input to its output.

Page 112 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Portal

Definition

portal(layer_from, layer_to)

Example

portal1 = portal(conv1, conv2)

Description This command adds a portal layer between two directly connected layers. When two layers are con-
nected using a portal, the data from the source layer leaves the cluster before it gets back in and reaches the
target layer. The main use case for this command is to solve edge cases when two layers are manually placed in
the same cluster. When two layers are in different clusters, there is no need to manually add a portal between
them.

L4 Portal

Definition

l4_portal(layer_from, layer_to)

Example

portal1 = l4_portal(conv1, conv2)

Description This command adds a L4-portal layer between two directly connected layers. This command is essen-
tially the same as portal, with the key difference that the data will be buffered in L4 memory, as opposed to
a regular portal which buffers the data in L3 memory. The main use case for this command is when a large
amount of data needs to be buffered between two endpoints, and it is required for this data to be buffered in
another memory hierarchy.

DDR Portal

Definition

ddr(layer_from, layer_to)

Example

ddr1 = ddr(conv1, conv2)

Description This command adds a DDR portal layer between two directly connected layers. This command is essen-
tially the same as portal, with the key difference that the data will be buffered in the host, as opposed to a
regular portalwhich buffers the data in on-chip memory. Note that this command is supported only in HEF
compilations and will work only on supported platforms (i.e. when using the PCIe interface).

Concatenation

Definition

concat(layers_from, layer_to)

Example

concat0 = concat([conv7, conv8], concat1)

Page 113 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Description Add a concat layer between several input layers and an output layer. This command is used to split
a “large” concat layer into several steps (For example, three concat layers with two inputs instead of a single
concat layer with four inputs).

Note: For now this command only supports two input layers (in the argument layers_from).

De-fuse

Definition

defuse(layer, defuse_number, defuse_type)

Examples

maxpool1_1, maxpool1_2, maxpool1_c = defuse(maxpool1, 2) # Defuse by output�
↪→features
conv4a, conv4b, conv4c, conv4concat = defuse(conv4, 3, defuse_type=SPATIAL) #�
↪→Defuse by output columns
dw10_fs, dw10_d0, dw10_d1, dw10_dc = defuse(dw10, 2, defuse_type=INPUT_
↪→FEATURES) # Defuse by input features
maxpool11_fs, maxpool11_d0, maxpool11_d1, maxpool11_dc = defuse(maxpool11, 2,�
↪→defuse_type=INPUT_FEATURES) # Defuse by input features

Description Defusing splits a logical layer into multiple physical layers in order to increase performance. This com-
mand orders the Allocator to defuse the given layer to defuse_number physical layers that share the same
job, plus an additional concat layer merges all outputs together (and an input feature splitter in case of fea-
ture splitter). Like most mechanisms, the defuse mechanism happens automatically, so no user intervention
is required.

Several types of defuse are supported, the most common are:

• Feature defuse: Each physical layer calculates part of the output features. Supported layers: Conv, De-
conv, Maxpool, Depthwise conv, Avgpool, Dense, Bilinear resize, NN resize.

• Spatial defuse: Each physical layer calculates part of the output columns. Supported layers: Conv, Deconv,
Depthwise conv, Avgpool, Argmax, NN resize.

• Input features defuse: Each physical layer receives a part of the input features. Supported layers: Max-
pool, Depthwise conv, Avgpool, NN resize, Bilinear resize.

For Feature defuse, don’t use the defuse_type argument (see examples).

Merge

Definition

merge(layer1, layer2)

Examples

merged_layer = merge(conv46, conv47)
merged_layer_conv12_dw5 = merge(conv12, dw5)
merged_layer_conv15_dw6 = merge(conv15, dw6)
merged_layer_conv18_conv19 = merge(conv18, conv19)

Description Merging is a mechanism that uses the same hardware resources to compute two layers. The FPS
of the layer will be lower than the two original layers, but unless it is a bottleneck layer, it could save re-
sources and result in total higher FPS. It is supported for a subset of layers and connectivity types. Auto-
matic merging of layers is performed on single context when needed, and could be affected with the alloca-
tor_param(merge_min_layer_utilization) command.

Page 114 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Compilation Parameters

Definition

compilation_param(layer, param=value)

Example

compilation_param(conv1_d0, resources_allocation_strategy=manual_scs_
↪→selection, number_of_subclusters=8, use_16x4_sc=enabled)

Description This will update the given layer’s compilation param. The command in the example sets the number of
subclusters of a specific layer to 8. In addition, it forces 16x4 mode, which means that each subcluster handles
16 columns and 4 output features at once. This is instead of the default of 8 and 8 respectively.

Supported compilation params:

• resources_allocation_strategy – defaults to min_l3_mem_match_fps, which
chooses the the number of subclusters that saves most L3 memory (Conv layers only). Change to
min_scs_match_fps in order to choose the lowest possible number of subclusters. Change to
manual_scs_selection to manually choose the number of subclusters (Conv, Dense and DW
layers only).

• use_16x4_sc – can use 16 pixels multiplication by 4 features – instead of the default 8 pixels by 8
features. This is useful when the number of features is smaller than 8. A table of supported layers is
given below (layers that are not mentioned are not supported).

• no_contexts – change to True in order to accumulate all the needed inputs for each output row
computation in the L3 memory. A table of supported layers is given below (layers that are not mentioned
are not supported).

• balance_output_multisplit – change to False in order to allow unbalanced output buffers.
This can be used to save memory when there are “long” skip connections between layers.

• number_of_subclusters – force the usage of a specific number of subclusters. Make sure the
resource allocation strategy value is set to manual_scs_selection. This is only
applicable to Conv and Dense layers.

• fps – force a layer to reach this throughput, possibly higher than the FPS used for the rest of the model.
This parameter is useful to reduce the model’s latency, however it is not likely to contribute to the model’s
throughput which is dominated by the bottleneck layer.

Glob syntax is supported to change many layers at once. For example:

compilation_param({conv*}, resources_allocation_strategy=min_scs_match_fps)

will change the resources allocation strategy of all the layers that start with conv.

Table 15. 16x4 mode support

Kernel type Kernel size (HxW) Stride (HxW) Dilation (HxW) Padding

Conv 1x1 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

Conv 3x3 1x1, 2x1 1x1
2x2 (stride=1x1 only)
3x3 (stride=1x1 only)
4x4 (stride=1x1 only)

SAME
SAME_TENSORFLOW

Conv 5x5 1x1, 2x1 1x1 SAME
SAME_TENSORFLOW

Continued on next page

Page 115 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 15 – continued from previous page

Kernel type Kernel size (HxW) Stride (HxW) Dilation (HxW) Padding

Conv 7x7 1x1, 1x2, 2x1, 2x2 1x1 SAME
SAME_TENSORFLOW

Conv 1x3, 1x5, 1x7 1x1 1x1 SAME
SAME_TENSORFLOW

Conv 3x5, 3x7, 5x3, 5x7,
7x3, 7x5

1x1 1x1 SAME
SAME_TENSORFLOW

Conv 3x4, 5x4, 7x4, 9x4 1x1 1x1 SAME
SAME_TENSORFLOW

Conv 3x6, 5x6, 7x6, 9x6 1x1 1x1 SAME
SAME_TENSORFLOW

Conv 3x8, 5x8, 7x8, 9x8 1x1 1x1 SAME
SAME_TENSORFLOW

Conv 9x9 1x1 1x1 SAME
SAME_TENSORFLOW

DW 3x3 1x1 1x1, 2x2 SAME
SAME_TENSORFLOW

DW 5x5 1x1 1x1 SAME
SAME_TENSORFLOW

Table 16. No contexts mode support

Kernel type Kernel size (HxW) Stride (HxW) Dilation (HxW)

Conv 3x3 1x1, 1x2, 2x1, 2x2 1x1

Conv 7x7 2x2 1x1

HEF Parameters

Definition

hef_param(should_use_sequencer=value, params_load_time_compression=value)

Example

hef_param(should_use_sequencer=True, params_load_time_compression=True)

Description This will configure the HEF build. The command in the example enables the use of Sequencer and
weights compression for optimized device configuration.

Supported hef parameters:

• should_use_sequencer – Using the Sequencer allows faster configurations load to device over
PCIe during network activation, but removes Ethernet support for the created HEF. It defaults to True.

• params_load_time_compression – defaults toTrue and enables compressing layers param-
eters (weights) in the HEF for allowing faster load to device during network activation. Note that load time
compression doesn’t reduce the required memory space. This parameter also removes Ethernet support
for the created HEF when enabled.

Page 116 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Outputs Multiplexing

Definition

output_mux(layers)

Example

output_mux1 = output_mux([conv7, fc1_d3])

Description The outputs of the given layers will be multiplexed into a single tensor before sending them back from
the device to the host. Contrary to concat layers, output mux inputs do not have to share the same width,
height, or numerical scale.

From TF

Definition

layer = from_tf(original_name)

Example

my_conv = from_tf('conv1/BiasAdd')

Description This command allows the use of the original (TF/ONNX) layer name in order to make sure that the correct
layers are addressed, as the HN layers names and the original layers names differ.

Note: Despite its name, this commands supports original names from both TF and ONNX.

Buffers

Definition

buffers(layer_from, layer_to, number_of_rows_to_buffer)
buffers(layer_from, layer_to, number_of_rows_cluster_a, number_of_rows_
↪→cluster_b)

Example

buffers(conv1, conv2, 26)

Description This command sets the size of the inter-layer buffer in units of layer_from’s output rows. Two
variants are supported. The first variant sets the total number of rows to buffer. The second variant sets two
such buffer sizes, in case the compiler adds a cluster transition between these layers. The first size sets the
number of rows to buffer before the cluster transition, and the second number sets the number of rows after
the transition. If there is no cluster transition, only the first number is used. The second variant is mainly used
in autogenerated scripts returned by save_autogen_allocation_script().

Page 117 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Feature Splitter

Definition

feature_splitter(layer_from, layers_to)

Example

aux_feature_splitter0 = feature_splitter(feature_splitter0, [conv0, conv1])

Description Add a feature splitter layer between an existing feature splitter layer and some of its outputs. This
command is used to break up a “large” feature splitter layer with many outputs into several steps.

Shape Splitter

Definition

shape_splitter(split_type, layer_from, layers_to)

Example

row_splitter1 = shape_splitter(SPLIT_HEIGHT, row_splitter0, [conv0, conv1])

Description Add a shape splitter layer between an existing shape splitter layer and some of its outputs. This com-
mand is used to break up a “large” shape splitter layer with many outputs into several steps.

Supported split types:

• SPLIT_HEIGHT – split the input tensor by height.

• SPLIT_WIDTH – split the input tensor by width.

• SPLIT_FEATURES – split the input tensor by features, beahves the same as feature_splitter com-
mand.

Platform Param

Definition

platform_param(param=value)

Examples

platform_param(targets=[ethernet])
platform_param(hints=[low_pcie_bandwidth])

Description This sets several parameters regarding the platform hosting Hailo as described below:

• targets – a list or a single value of hosting target restrictions such as Ethernet which requires
disabling a set of features.

Current supported targets: Ethernet, which disables the following features:

– DDR portals, since the DDR access through PCIe is not available

– Context Switch (multi contexts), since DDR access is not available

– Sequencers (a fast PCIe-based model loading)

• hints – a list of hints or a single hint about the hosting platform such as Low PCIE bandwidth
which optimizes performance for specific scenarios.

Current supported hints: low_pcie_bandwidth, adjusts the compiler to reduce the PCIE band-
width by disabling or changing decision thresholds regarding when PCIE should be used.

Page 118 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Performance Param

Definition

performance_param(compiler_optimization_level=max)

Description Setting this parameter enters performance mode, in which the compiler will try as hard as it can to find a
solution that will fit in a single context, with the highest performance. This method of compilation will require
significantly longer time to complete, because the compiler tries to use very high utilization levels, that might
not allocate successfully. If it fails to allocate, it automatically tries lower utilization, until it finds the highest
possible utilization.

Remove Node

Definition

remove_node(layer_name)

Example

remove_node(conv1)

Description removing layer from the network. This command is useful to remove layers that are give
by the hn but we can remove them. Should be use internally only and with caution.

• layer_name – the name of the layer to remove.

5.4. Model Scripts

While it is recommended to optimize and compile using the default configuration (using either the CLI tools or Python
APIs), Model Scripts make it possible to change the default behavior of the Dataflow Compiler, and to make modifi-
cations to the model.

Example CLI usage:

hailo optimize <HAR_PATH> ­­model­script <MODEL_SCRIPT_PATH>

Example Python API usage:

client_runner.load_model_script('model_script.alls')
client_runner.optimize(calib_dataset)
compiled_hef = client_runner.compile()

The model script is a text file that is optionally fed to the Optimize or Compile functions, that contains commands that
serve different purposes. The most frequently used and recommended commands are:

• Full-Precision Optimization stage:

– [Important] The Model Modification commands are used to modify the parsed model, and to add transfor-
mations (that were not originally a part of the original ONNX/TF model) to decrease CPU load. Examples:

* Apply normalization at the inputs.

* Apply format or color conversions at the input.

* Apply resize at the input, from the source resolution to the model’s resolution.

* Add post processing to your model, on supported architectures only (if not detected automatically
during the parsing stage).

• Numerical Optimization stage:

– [Important] The Optimization level determines how aggressive are the algorithms that are used to in-
crease the accuracy of the quantized model. Higher optimization level requires more time and system
resources, but results in higher accuracy.

Page 119 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

– [Important] The Compression level determines the percentage of 4-bit layers, higher amount increases
the performance (FPS) of the compiled model. Requires a high optimization level, to regain the accuracy
loss.

– Resolution reduction command can be used to run the Optimization stage in lower spatial resolution, to
decrease its running time.

– Advanced commands:

* The precision_mode field of the quantization_param command can be used to apply 16-bit precision
to specific layers or outputs, to increase the model accuracy.

* Weights clipping can be used to ignore outliers on a layer’s weights, to increase the accuracy.

* Activation clipping can be used to ignore outliers on a layer’s activations, to increase the accuracy.

* Global average pool reduction can be used to split a global average pooling layer with a large input
resolution.

* The Post-quantization commands allows to change the parameters of the advanced post-quantization
algorithms. Although the algorithms and their parameters are automatically chosen according to the
Optimization level, manual configuration is possible. For example, decreasing the AdaRound batch
size if it fails.

* When Optimization level < 2, you can manually enable the checker_cfg in order to collect activation
statistics, for further analysis using the profiler (it is enabled by default when Optimization level >=
2).

• Compilation stage:

– [Important] The Performance Mode can be used to compile the model to the highest possible resource
utilization, to maximize performance (FPS). Expect the compilation time to increase dramatically.

– Suggestions for the compilation could be supplied (for example: compile for platforms with low PCIe band-
width).

– The Automatic model script can be used to pin the compilation results to a previously compiled version of
the same model.

Note: Each stage only considers commands that are relevant for it; If a model script is provided at the Optimization
stage, but also contains compilation related commands, those commands will be ignored at the Optimization stage,
but will be activated during the compilation stage.

Note: If a new model script is given at the Compilation stage, it will not undo the already executed optimization
related commands, but will overwrite any compilation related commands that were loaded at the Optimization stage.

5.5. Supported Layers

The following section describes the layers and parameters range that the Dataflow Compiler supports internally.

However, the Parser (that translates the original model to Hailo’s internal representation) support varies across frame-
works, so that some layers that are supported internally might not be supported on all frameworks, and vice-versa.
Therefore, please also refer to the supported APIs lists to ensure support for your model.

Note: Up to four successor layers are supported after each layer. Each successor receives the same data, except
when using the Features Split layer.

Note: Padding type definitions are:

Page 120 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• SAME: Symmetric padding.

• SAME_TENSORFLOW: Identical to Tensorflow SAME padding.

• VALID: No padding, identical to Tensorflow VALID padding.

5.5.1. Convolution

Convolution layers are supported with any integer values of kernel size, stride, dilation. Padding types supported are:
VALID, SAME, and SAME_TENSORFLOW. The following table displays the current optimized params.

Table 17. Convolution kernel optimized parameters

Kernel (HxW) Stride (HxW) Dilation (HxW) Padding

1x1 1x1, 2x1, 2x2 1x1 SAME
SAME_TENSORFLOW
VALID

3x3 1x1, 1x2, 2x1, 2x2 1x1
2x2 (stride=1x1 only)
3x3 (stride=1x1 only)
4x4 (stride=1x1 only)
6x6 (stride=1x1 only)
8x8 (stride=1x1 only)
16x16 (stride=1x1 only)

SAME
SAME_TENSORFLOW
VALID

2x2 2x1 1x1 SAME
SAME_TENSORFLOW
VALID

2x2, 2x3, 2x5,2x7, 3x2,
5x2, 7x2

2x2 1x1 SAME
SAME_TENSORFLOW

5x5, 7x7 1x1, 1x2, 2x1, 2x2 1x1 SAME
SAME_TENSORFLOW
VALID (stride=1x1
only)

6x6 2x2 1x1 SAME
SAME_TENSORFLOW
VALID

1x3, 1x5, 1x7 1x1, 1x2 1x1 SAME
SAME_TENSORFLOW
VALID (stride=1x1
only)

3x5, 3x7, 5x3, 5x7, 7x3,
7x5

1x1, 1x2 1x1 SAME
SAME_TENSORFLOW
VALID (stride=1x1
only)

3x1 1x1, 2x1 1x1 SAME
SAME_TENSORFLOW
VALID

5x1, 7x1 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

Continued on next page

Page 121 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 17 – continued from previous page

Kernel (HxW) Stride (HxW) Dilation (HxW) Padding

1x9, 3x9, 5x9, 7x9 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

9x1, 9x3, 9x5, 9x7, 9x9 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

3x4, 5x4, 7x4, 9x4 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

3x6, 5x6, 7x6, 9x6 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

3x8, 5x8, 7x8, 9x8 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

1xW 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

MxN MxN 1x1 SAME
SAME_TENSORFLOW
VALID

MxN, where M,N in {1..16} AxB, where A,B in
{1..4}

CxD, where C,D in {1..9} SAME
SAME_TENSORFLOW
VALID

Any other Any other Any other SAME
SAME_TENSORFLOW
VALID

‘W’ refers to the width of the layer’s input tensor, in this case the kernel width is equal to the image width

Table 18. Convolution & add kernel supported parameters

Kernel (HxW) Stride (HxW) Dilation (HxW) Padding

1x1, 1x3, 1x5, 1x7 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

3x1, 3x3, 3x5, 3x7 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

5x1, 5x3, 5x5, 5x7 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

7x1, 7x3, 7x5, 7x7 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

Note: Convolution kernel with elementwise addition supports the addition of two tensors only.

Conv3D is supported with the following parameters:

Page 122 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 19. 3D Convolution supported parameters

Kernel
(HxWxD)

Stride
(HxWxD)

Dilation
(HxWxD)

Padding Notes

3x3x3 1x1x1 1x1x1 SAME
SAME_TENSORFLOW
VALID

PREVIEW

3x3xAny 1x1xAny 1x1x1 SAME
SAME_TENSORFLOW
VALID

PREVIEW

Note: Current limitations of Conv3D layer:

1. Models that contain Conv3D layer must have rank-4 input and output (4 dimentions at most), so the Conv3D
layer must reside inside a “2D” model.

2. The input to the first 3D Conv needs to be created using a Concat layer on the Disparity dimension (after
Unsqueeze).

3. The last Conv3D in the chain must have output_features = 1 (HxWxDx1), followed by a Squeeze operation, then
a Conv2D or a Resize layer.

Note: Number of weights per layer <= 8MB (for all Conv layers).

5.5.2. Max Pooling

Table 20. Max pooling kernel supported parameters

Kernel (HxW) Stride (HxW) Padding

2x2 1x1, 2x1, 2x2 SAME
SAME_TENSORFLOW
VALID

1x2 1x2 SAME
SAME_TENSORFLOW
VALID

3x3 1x1 SAME
SAME_TENSORFLOW
VALID

3x3 2x2 SAME
SAME_TENSORFLOW
VALID

5x5, 9x9, 13x13 1x1 SAME
SAME_TENSORFLOW
VALID

Any other Any other SAME
SAME_TENSORFLOW
VALID

“Any other” means any kernel size or stride between 2 and the tensor’s dimensions, for example 2 ≤ kh ≤ H where
kh is the kernel height and H is the height of the layer’s input tensor.

Page 123 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.3. Dense

Dense kernel is supported. It is supported only after a Dense layer, a Conv layer, a Max Pooling layer, a Global Average
Pooling layer, or as the first layer of the network.

When a Dense layer is after a Conv or a Max Pooling layer, the data is reshaped to a single vector. The height of the
reshaped image in this case is limited to 255 rows.

5.5.4. Average Pooling

Average Pooling layers are supported with any integer values of kernel size, stride, and dilation. Padding types sup-
ported are: VALID, SAME, and SAME_TENSORFLOW. The following table displays the current optimized params.

Table 21. Average pooling kernel optimized parameters

Kernel (HxW) Stride (HxW) Padding

2x2 2x2 SAME
SAME_TENSORFLOW
VALID

3x3 1x1, 2x2 SAME
SAME_TENSORFLOW

3x4 3x4 SAME
SAME_TENSORFLOW
VALID

5x5 1x1, 2x2 SAME
SAME_TENSORFLOW

hxW hxW VALID

Global n/a n/a

SAME
SAME_TENSORFLOW
VALID

‘W’ means the width of the layer’s input tensor. In other words, in this case the kernel width equals to the image width.
‘h’ means any height, from 1 up to the input tensor height.

5.5.5. Concat

This layer requires 4-dimensional input tensors (batch, height, width, features), and concatenates them in the features
dimension. It supports up to 4 inputs.

5.5.6. Deconvolution

Table 22. Deconvolution kernel supported parameters

Kernel (HxW) Rate (HxW) Padding

16x16 8x8 SAME_TENSORFLOW

8x8 8x8 SAME_TENSORFLOW

8x8 4x4 SAME_TENSORFLOW

4x4 4x4 SAME_TENSORFLOW

4x4 2x2 SAME_TENSORFLOW

Continued on next page

Page 124 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table 22 – continued from previous page

Kernel (HxW) Rate (HxW) Padding

3x3 2x2 SAME_TENSORFLOW

2x2 2x2 SAME_TENSORFLOW

1x1 1x1 SAME_TENSORFLOW

5.5.7. Depthwise Convolution

Depthwise Convolution layers are supported with any integer values of kernel size, stride, and dilation. Padding types
supported are: VALID, SAME, and SAME_TENSORFLOW. Utilizing a Depthwise 1x1 stride 1x1 kernel with elementwise
addition, supports the addition of two tensors only

Table 23. Depthwise convolution kernel optimized parameters

Kernel (HxW) Stride (HxW) Dilation (HxW) Padding

1x1 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

2x2 2x2 1x1 SAME
SAME_TENSORFLOW
VALID

3x3 1x1, 2x2 1x1
2x2 (stride=1x1 only)
4x4 (stride=1x1 only)

SAME
SAME_TENSORFLOW
VALID (stride=1x1, dila-
tion=1x1 only)

3x5, 5x3 1x1 1x1 SAME
SAME_TENSORFLOW
VALID

5x5 1x1, 2x2 1x1 SAME
SAME_TENSORFLOW
VALID (stride=1x1, dila-
tion=1x1 only)

9x9 1x1 1x1 SAME
SAME_TENSORFLOW

SAME
SAME_TENSORFLOW
VALID

5.5.8. Group Convolution

Group Convolution is supported with all supported Convolution kernels.

For Conv 1x1/1, 1x1/2, 3x3/1, and 7x7/2, any number of output features is supported. For all other supported Conv
kernels, only OF%8=0 or OF<8 is supported, where OF is the number of output features in each group.

Page 125 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.9. Group Deconvolution and Depthwise Deconvolution

Group Deconvolution is supported with all supported Deconvolution kernels. Only OF%8=0 or OF<8 is supported,
where OF is the number of output features in each group.

Depthwise Deconvolution is a sub case of Group Deconvolution.

5.5.10. Elementwise Multiplication and Division

Elementwise operations require:

1. Two input tensors with the same shape.

Example: [N, H, W, F], [N, H, W, F]

2. Two tensors with the same batch and spatial dimensions, one tensor has features dimension 1.

Example: [N, H, W, F], [N, H, W, 1]

3. Two tensors with the same batch and feature dimensions, one of them has spatial dimension [1, 1].

Example: [N, H, W, F], [N, 1, 1, F].

4. Two tensors with the same batch dimension, one of them has feature and spatial dimension [1, 1, 1].

Example: [N, H, W, F], [N, 1, 1, 1].

Note: The resize layer can broadcast a tensor from (batch, 1, 1, F) to (batch, height, width, F), where F is the number
of features. This may be useful before the Elementwise Multiplication layer.

5.5.11. Add and Subtract

Add and subtract operations are supported in several cases:

1. Bias addition after Conv, Deconv, Depthwise Conv and Dense layers. Bias addition is always fused into another
layer.

2. Elementwise addition and subtraction: When possible, elementwise add / sub is fused into a Conv layer as
detailed above. Elementwise add / sub is supported on both “Conv like” and “Dense like” tensors, with shapes
in the format shown on Elementwise Multiplication and Division

3. Addition of a constant scalar to the input tensor.

4. AddN (only in TFlite)

5.5.12. Input Normalization

Input normalization is supported as the first layer of the network. It normalizes the data by subtracting the given
mean of each feature and dividing by the given standard deviation.

Page 126 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.13. Multiplication by Scalar

This layer multiplies its input tensor by a given constant scalar.

5.5.14. Batch Normalization

Batch normalization layer is supported. When possible, it is fused into another layer such as Conv or Dense. Other-
wise, it is a standalone layer.

Calculating Batch Normalization statistics in runtime using the Hailo device is not supported.

5.5.15. Resize

Two methods are supported: Nearest Neighbor (NN) and Bilinear. In both methods, the scaling of rows and columns
can be different.

These methods are supported in three cases:

1. When the columns and rows scale is a float (for rows also <= 4096), the new sizes are integers,
where half_pixels and align_corners satisfies one of the following: align_corners=True & half_pixels=False,
align_corners=False & half_pixels=True, align_corners=False & half_pixels=False.

2. When the input shape is (batch, H, 1, F) and the output shape is (batch, rH, W, F). The number of features F
stays the same and the height ratio r is integer. This case is also known as “broadcasting” (NN only).

3. When the input shape is (batch, H, W, 1) and the output shape is (batch, H, W, F). The height H and the width W
stay the same. This case is also known as “features broadcasting” (NN only).

Note: align_corners: If True, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving
the values at the corner pixels. See definition here (PyTorch) and here (TensorFlow).

half_pixel: Relevant for Pytorch / ONNX, as defined on the ONNX Operators page, under coordi-
nate_transformation_mode.

5.5.16. Depth to Space

Depth to space rearranges data from depth (features) into blocks of spatial data.

Two modes are supported (check out ONNX operators spec for more info - https://github.com/onnx/onnx/blob/main/
docs/Operators.md#depthtospace):

1. “DCR” mode – the default mode, where elements along the depth dimension from the input tensor are rear-
ranged in the following order: depth, column, and then row.

2. “CRD” mode – elements along the depth dimension from the input tensor are rearranged in the following order:
column, row, and the depth.

MxN block size is supported, where M, N are integers, in both modes.

Table 24. Depth to space kernel supported parameters

Block size (HxW)

1x2

2x1

2x2

Depth to space is only supported when IF%(BW ·BH) = 0, where IF is the number of input features, BW is the

Page 127 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html#upsample
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/resize-nearest-neighbor
https://github.com/onnx/onnx/blob/main/docs/Operators.md#attributes-78
https://github.com/onnx/onnx/blob/main/docs/Operators.md#depthtospace
https://github.com/onnx/onnx/blob/main/docs/Operators.md#depthtospace

Hailo Dataflow Compiler User Guide

width of the depth to space block and BH is the height of the block.

5.5.17. Space to Depth

Space to depth rearranges blocks of spatial data into the depth (features) dimension.

1. “Classic” variant – The inverse of the Depth to Space kernel. It is identical to Tensorflow’sspace_to_depth
operation. Supports MxN block size, where M, N are integers.

2. “Focus” variant – It supports the 2x2 block size. Used by models such as YOLOv5, YOLOP. It is defined by the
following Tensorflow code:

op = tf.concat([inp[:, ::block_size, ::block_size, :], inp[:, 1::block_size, ::block_
↪→size, :],

inp[:, ::block_size, 1::block_size, :], inp[:, 1::block_size, 1::block_size,
↪→ :]], axis=3)

where inp is the input tensor.

5.5.18. Softmax

Softmax layer is supported in three cases:

1. After a “Dense like” layer with output shape (batch, features). In this case, Softmax is applied to the whole
tensor.

2. After another layer, if the input tensor of the Softmax layer has a single column (but multiple features). In this
case, Softmax is applied row by row.

3. After another layer, even if it has multiple columns. In this case Softmax is applied pixel by pixel on the feature
dimension. This case is implemented by breaking the softmax layer to other layers.

5.5.19. LogSoftmax

LogSoftmax is supported only for a 4-dimensional input shape (batch, height, width, features). Implemented by break-
ing the softmax layer to other layers.

5.5.20. Argmax

Argmax kernel is supported if it is the last layer of the network, and the layer before it is has a 4-dimensional output
shape (batch, height, width, features).

Note: Currently argmax supports up to 64 features.

5.5.21. ReduceMax

Reduce Max is supported along the features dimension, and if the layer before it is has a 4-dimensional output shape
(batch, height, width, features).

Page 128 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.22. Reduce Sum

If the layer before it is has a 4-dimensional output shape (batch, height, width, features), the Reduce Sum layer is
supported along the features, features and width dimensions or hight and width dimensions. If the layer before it
has a 2-dimensional output shape (batch, features), the Reduce Sum layer is supported along the features dimension.

5.5.23. Reduce Sum Square

Reduce Sum Square is supported along the features or the spatial dimensions.

5.5.24. Feature Shuffle

Feature shuffle kernel is supported if F%G = 0, where G is the number of feature groups.

5.5.25. Features Split

This layer requires 4-dimensional input tensors (batch, height, width, features), and splits the feature dimension into
sequential parts. Only static splitting is supported, i.e. the coordinates cannot be data dependent.

5.5.26. Slice

This layer requires 4-dimensional input tensors (batch, height, width, features), and crops a sequential part in each
coordinate in the height, width, and features dimensions. Only static cropping is supported, i.e., the coordinates
cannot be data dependent.

5.5.27. Reshape

Reshape is supported in the following cases:

“Conv like” to “Dense like” Reshape Reshaping from a Conv or Max Pooling output with shape (batch, height, W ′,
F ′) to a Dense layer input with shape (batch, F), where F = W ′ · F ′.

“Dense like” to “Conv like” Reshape Reshaping a tensor from (batch, F) to (batch, 1, W ′, F ′), where F = W ′ · F ′

and F ′%8 = 0.

Features to Columns Reshape Reshaping a tensor from (batch, height, 1, F) to (batch, height, W ′, F ′), where F =
W ′ · F ′.

Transpose, on the other side, permutes the order of the dimensions without changing them.

5.5.28. External Padding

This layer implements zeros padding as a separate layer, to support custom padding schemes that are not one of
three schemes that are supported as a part of other layers (VALID, SAME and SAME_TENSORFLOW).

Page 129 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.29. Matmul

This layer implement data driven matrices multiplication X x Y = Z. Input sizes should obey matrices multiplication
rules.

Support is currently available only as part of a Multi Head Attention block.

5.5.30. Multi Head Attention

This layer is a major building block for Transformer models. It receives (K, Q, V) matrices, and implements the formula:

Softmax

(
Qi ·KT

i√
dk

)
· Vi

When Qi,Ki, Vi are matrices that result from multiplying the input matrices K, Q, V by WK
i ,WQ

i ,WV
i respectively

(W are learned matrices), i ranges from 0 to #heads - 1. Then concatenating the results after multiplying by a learned
weights vector W 0.

Hailo supports 3-dimentional tensors as inputs to this layer. An example code:

keep previous shape; This code is PyTorch, on which the input shape in channels­first.
b, in_channels, h, w = prev_output.shape

reshape [b, channels, h, w] ­> [b, channels, h*w=N]
x = prev_output.flatten(2)

transpose [b, channels, h*w] ­> [b, h*w, channels] or [h*w, b, channels]
if self.batch_first:
x = x.permute(0, 2, 1)

else:
x = x.permute(2, 0, 1)

self.q, self.k and self.v were defined as Linear transformations, for example: `self.
↪→v = nn.Linear(channels, self.d_v)`
self.mha = nn.MultiheadAttention(.., batch_first=self.batch_first)
mha_output = self.mha(self.q(x), self.k(x), self.v(x))[0]

transpose [b, h*w, channels] or [h*w, b, channels] ­> [b, channels, h*w], then�
↪→reshape [b, channels, h*w] ­> [b, channels, h, w]
_, _, out_channels = mha_output.shape
if self.batch_first:
unflattened = mha_output.permute(0, 2, 1).reshape(b, out_channels, h, w)

else:
unflattened = mha_output.permute(1, 2, 0).reshape(b, out_channels, h, w)

5.5.31. RNN and LSTM

RNNs (Recurrent Neural Networks) and LSTMs (Long Short Term Memory) are mainly used on sequential or time
series data. By using a feedback loop and an internal state, they utilize information from prior inputs to influence the
current output and update the state. The sequence length of an RNN or LSTM block is the number of past or future
inputs that affect the current one.

Since Hailo does not allow feedback loops, those layers are supported by the Unrolling technique, which dupli-
cates each RNN or LSTM block by sequence length times. Therefore, high sequence lengths (more than 10 for for-
ward/backward, or 5 for bidirectional) may lead to performance degradation.

Hailo supports the following layer flavors:

• Forward: Current input utilizes information from previous inputs; Supported for RNN and LSTM.

• Bidirectional: Current input utilizes information from previous and future inputs; Supported for LSTM.

Page 130 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.32. Transpose

The Transpose operator permutes two dimensions of the input tensor.

Hailo supports the following Transpose operations:

• Transpose of Width <-> Column dimensions.

• Transpose of Height <-> Width dimensions, only in tensors where their complete quantized size is smaller than
1.5MB. This type of transpose is not optimal for performance, since it requires the buffering of the whole tensor,
creating a “pipeline stop” that raises the latency of the model.

• Transpose of Height <-> Feature, with the same disclaimer as above.

5.5.33. Activations

The following activations are supported:

• Linear

• Relu

• Leaky Relu

• Relu 6

• Elu

• Sigmoid

• Exp

• Tanh

• Softplus

• Threshold, defined by x if x >= threshold else 0.

• Delta, defined by 0 if x == 0 else const.

• SiLU

• Swish

• Mish

• Hard-swish (preview)

• Gelu (preview)

• PRelu

• Sqrt

• Log

• Hard-sigmoid

• Min

• Max

• Clip

• Less

• Softsign

• Greater

Activations are usually fused into the layer before them, however they are also supported as standalone layers when
they can’t be fused.

Page 131 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

5.5.34. Square, Pow

• Square operator (x*x) is supported.

• Pow operator is currently supported with exponent=2 or fraction < 1.

5.5.35. Elementwise Max

• Elementwise max is supported for two input tensors of the same shape.

5.5.36. L2 Operators

• ReduceL2 is supported.

• L2Normalization is supported.

5.5.37. Note about Symmetric Padding

The Hailo Dataflow Compiler supports symmetric padding as supported by other frameworks such as Caffe. As the
SAME padding in Tensorflow is not symmetric, the only way to achieve this sort of padding is by explicitly using tf.
pad followed by a convolution operation with padding='VALID'. The following code snippet shows how this
would be done in Tensorflow (the padding generated by this code is supported by the Dataflow Compiler):

pad_total_h = kernel_h ­ 1
if strides_h == 1:
pad_beg_h = int(ceil(pad_total_h / 2.0))

else:
pad_beg_h = pad_total_h // 2

pad_end_h = pad_total_h ­ pad_beg_h

skipping the same code for pad_total_w

inputs = tf.pad(
inputs,
[[0, 0], [pad_beg_h, pad_end_h], [pad_beg_w, pad_end_w], [0, 0]])

Page 132 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

6. Profiler and Other Command Line Tools

6.1. Using Hailo Command Line Tools

The Hailo Dataflow Compiler offers several command line tools that can be executed from the Linux shell. Before
using them, the virtual environment needs to be activated. This is explained in the tutorials.

To list the available tools, run:

hailo ­­help

The ­­help flag can also be used to display the help message for specific tools. The following example prints the
help message of the Profiler:

hailo profiler ­­help

The command line tools cover major parts of the Dataflow Compiler’s functionality, as an alternative to using the
Python API directly:

6.1.1. Model Conversion Flow

• The hailo parser command line tool is used to translate ONNX / TF models into Hailo archive (HAR) files.

Note: Consult Translating Tensorflow and ONNX models and hailo parser {tf, onnx} ­­help for further
details on the according parser arguments.

• The hailo optimize command line tool is used to optimize models’ performance.

Note: Consult Model Optimization andhailo optimize ­­help for further details on quantization arguments.

• The hailo compiler command line tool is used to compile the models (in HAR format) into a hardware
representation.

Note: Consult Compilation and hailo compiler ­­help for further details on compilation arguments.

6.1.2. Analysis and Visualization

The list below describes the Hailo command line interface functions for visualization and analysis:

• The hailo analyze­noise command is used to analyze per-layer quantization noise. Consult Model
Optimization Workflow for further details.

• The hailo params­csv command is used to to generate a CSV report with weights statistics, which is
useful for analyzing the quantization.

• The hailo tb command is used to convert HAR or CKPT files to Tensorboard.

• The hailo visualizer command is used to visualize HAR files.

• The hailo har command is used to extract information from HAR files.

Page 133 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

6.1.3. Tutorials

• Thehailo tutorial command opens Jupyter with the tutorial notebooks folder. Select one of the tutorials
to run.

6.2. Running the Profiler

The Model Profiler analyzes the expected performance of a compiled model on hardware and displays the optimiza-
tion analysis.

To run the Profiler, use the following command:

hailo profiler network.har

The user has to set the path of the HAR file to profile, additional optional parameters may be needed.

Profiler Modes:

• Default operation mode

– For runner (or HAR file) in Native state (before quantization): Presents model overview.

– For runner (or HAR file) in Quantized state (after optimization): Presents Optimization details.

– For runner (or HAR file) in Compiled state (or Quantized state + ­­hef flag): Presents Optimization
details and compilation data, (note).

• Profiler with Runtime Data: By using the ­­runtime­data <JSON_FILE> flag with a runner (or HAR
file) in Compiled state (or Quantized +­­hef), the profiler will show full compilation and performance data.
The JSON file is generated using hailortcli run2 ­m raw measure­fw­actions set­net
<HEF­PATH> command on the target platform. In case HailoRT is installed on the same machine as the
Dataflow Compiler, the ­­collect­runtime­data profiler argument can be used to run the compiled
model on this platform and display the full report. See example at the bottom of the Inference Tutorial.

• Accuracy Profiler: By default, when running after quantization, only partial noise/accuracy data is dis-
played. The user can add the full analysis information by running the profiler on a HAR file that is a
result of hailo analyze­noise <har­path> ­­data­path <data­path> tool. Another
option is to add model_optimization_config(checker_cfg, policy=enabled, ana­
lyze_mode=advanced) to the model script before the optimization stage. See example at the Layer
Noise Analysis Tutorial.

Note: For single-context networks, the profiler report calculates the proposed FPS and latency of the whole model.
However, on hosts with low PCIe bandwidth, it might not reflect actual performance. If the performance is worse than
the profiler report values, it is recommended to try and disable DDR buffers.

Note: For single-context networks,­­stream­fps argument can be used to normalize the power and bandwidth
values according to the FPS of the input stream.

Note: For big models (when the compilation results in multi-context), performance data will not be available since it
depends on various runtime factors. To present performance data for those models, use the Profiler with Runtime
Data mode.

Page 134 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

6.2.1. Understanding the Profiler Report

The Hailo Model Profiler’s report consists of the following tabs:

• Model Overview – Presents a summary of the model and its performance (runtime data will be required for
presenting the performance of big models)

• Optimization Details – Presents global Optimization-related information, and also per-layer statistics, both
native and quantized, used for gaining insights about degradation factors

• Compilation & Runtime Details – The percentage of the device(s) resources to be used by the target model,
and per-layer resources information. Presents simulated performance information for small models, and,
when runtime data file is provided, presents the measured performance for small and big models (see the
note above).

Figure 8. Model Overview Tab

The following sections describe all tabs of the report and define the fields in each one:

6.2.2. Header

Device The device that the model is compiled for. Hailo-8 for example.

Tabs The three main tabs.

Profiler Parameters An icon on the top right corner, shows information about the Dataflow Compiler version and
profiling mode.

Page 135 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

6.2.3. Model Overview tab

Model Details (top drawer)

Model Name The model name (for example, Resnet18).

Model Parameters The number of model parameters (weights and biases), without any hardware-related over-
heads.

Model Layers The number of layers on the model.

Operations per Input Tensor (OPS) Total operations per input image.

Input Tensors Shapes The resolution of the model’s input image (for example, HxWxC = 224x224x3).

Output Tensors Shapes The resolution of the model’s output shape (for example, HxWxC = 1x1x1000).

Model Graph

Graph representation of the model that is parsed using the Hailo Parser. If the model is in FP-Optimized or more
advanced state, it shows the model with the requestedmodelmodifications and further optimizations. Allows scrolling,
zooming in/out, and selecting a specific layer to display Kernel, Activation and Batch Norm information.

Performance Details

Throughput / FPS The overall network FPS, per batch size (for small models, the same FPS is achieved across all
batch sizes). The selection of a FPS-per-batch affects the next values.

Latency The number of milliseconds it takes the network to process an image / batch of images.

of Contexts The amount of consecutive allocations that are used for the compilation of the model on the device.
Small models require 1 context. Large models consist of 2 or more contexts.

Operations per Second (OP/s) The total operations per second, based on the FPS rate.

Total NN Core Power Consumption The estimated power consumption of the neural core in watts at standard 25°
C. This field excludes power consumed by the chip top and interfaces. Only appears for small models (that fit
into a single context), and with accuracy of +/-20%.

Input Throughput (Input BW) The model’s total input tensor throughput (bytes per second), based on the FPS rate.

Output Throughput (Output BW) The model’s total tensor output throughput (bytes per second), based on the FPS
rate.

6.2.4. Optimization Details Tab

Global Optimization Details (top drawer)

Optimization Level Complexity of the optimization algorithm that was used to quantize the model.

Compression Level Level of weights compression to 4-bit that was used (0 corresponds to 0% 4-bit weights, and 5
corresponds to 100% 4-bit weights).

Calibration Set Size Calibration set size that was used to optimize the model.

Ratio of Weights Resulted percentage of 4/8/16-bit weights.

Page 136 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Figure 9. Optimization Details tab

Model Modifications (top drawer)

Input Conversion Input color/format conversions that were added to the model using a model script command.

Input Resize Input resize that was added to the model using a model script command.

Transpose Model (H<->W) The model was transposed using a model script command.

Normalization Input normalization that was added to the model using a model script command.

Post Processing Post-processing that was added to the model using a model script command. Can be either a single
Op (like Softmax or Sigmoid) or a complex method (like NMS).

SNR Chart (top drawer)

A plot of signal-to-noise ratio between the full precision and quantized model. The SNR value is measured at the out-
put layer(s) of the model and in each measurement, only a single layer is quantized. This graph shows the sensitivity
of each layer to quantization measured in dB. The most sensitive layers (< 10dB) are highlighted. In cases where there
are multiple output layers, multiple graphs will be shown.

Layer(s) with low SNR could be improved using the following techniques.

Model Graph

Similar to the model graph on the Model Overview tab.

Page 137 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Layer Analytics

This view is the default view on the bottom-right side, it can be switched to the Table view with the icon on its top
right corner.

Layer Details

For each layer, the fields presented below describe it’s properties:

Layer Name The name of the layer, as defined in the HN/HAR.

Layer Type The type of operation performed by this layer (for example, convolution or max pooling).

Operations The number of multiply-accumulate operations, required by the layer.

Parameters The number of layer parameters (weights and biases), required by the layer.

Input Shape The shape of the input tensor processed by this layer.

Output Shape The shape of the output tensor processed by this layer.

Kernel Shape The shape of the kernel weights matrix (for example: A Conv layer with 3x3x64x64 means 3x3 kernel,
64 input features and 64 output features).

Strides The kernel stride.

Dilation The kernel dilation.

Groups The number of groups the kernel is split into. On most cases, groups are calculated independently. For
example, convolution layers with more than one group are called “group convolution” layers.

Activation Specifies the activation function type that is performed on the output of the layer.

Batch Norm Specifies whether batch normalization was used during training on this layer.

Original Names The original name(s) of the layer(s) in the original model file (TF or ONNX), that are merged into this
layer (for example a Conv layer, a Batch Norm and an Activation).

Optimization Details

Displays statistics per each layer, collected by passing the calibration set through the model:

SNR (on layer) Signal-to-noise ratio between the full precision and quantized model, measured at this layer’s out-
put, when all the layers are quantized. It helps to understand what is the SNR at this point on the quantized
model, considering all previous layers have been quantized. Expect low on-layer SNR at the final nodes of the
model, compared to the on-layer SNR at the beginning. Note the difference between this measure to the SNR
chart on top drawer, which shows the SNR at the model’s outputs, when only one layer is quantized at a time.

Bits (Input, Weights, Bias, Output) The amount of bits used to represent the [Input, Weights, Bias, Output] of the
layer.

MO Algorithms Which algorithms were used on this layer in the Optimization phase of the model: Equalization,
FineTune, Bias Correction, and AdaRound.

Weight Histogram This histogram shows the full precision weights distribution. Outliers in the distribution might
cause degradation. Kernel Ranges are the minimum and maximum values of the weights of the layer.

Activations Histogram This histogram shows the full precision activations distribution. Outliers in the distribution
might cause degradation. Input Ranges are the minimum and maximum values at the layer’s inputs (before
quantization). Output Ranges are the minimum and maximum values at the layer’s outputs (before quantiza-
tion).

Scatter Plot This graph shows the difference for representative activation values between the full precision and
quantized model as measured at the output of the layer. Better quantization means the trend should be closer
to a slope of 1 (that represents zero quantization noise). If a layer has some outliers (far from the slope=1 line),
or the values resemble a “cloud” instead of a straight linear line, it may point to quantization errors. Use the
following techniques to try and improve it.

Page 138 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Model Table

This view can be switched into by using the icon on the top right corner on the right side of the tab. You can select
which fields are displayed, and scroll horizontally if not all the fields are visible.

The displayed fields are all the fields that appear on the Layer Analytics / Layer Details, plus the SNR
(per layer), and Bits information.

6.2.5. Compilation & Runtime Details Tab

Figure 10. Compilation & Runtime tab

Model Performance (top drawer)

Displays the performance information of the model. Available for small (single context) models, or for big (multi
context) models with runtime data.

The fields are the same fields from the Model Overview tab / Performance Details section.

Measured Runtime Graph (top drawer)

For large (multi context) models only. A timeline graph that shows the consecutive loading and execution of the
model’s contexts on the device, to complete a single inference (of a specific batch of images). Available only when
­­runtime­data is provided.

Each context consists of five phases:

• Config time – Time required to fetch weights and configurations over the DDR interface.

• Load time – Some of the fetched data needs to be prepared and loaded into the resources of the device.

• Inference time – The time it takes for the first layer to complete processing the batch.

• Drainage time – The time it takes for the last layer to complete processing the batch, measured from the end
of the Inference time.

• Overhead time – Initializing / finalizing the resources before / after the inference.

Page 139 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Measured Bandwidth Graph (top drawer)

For large (multi context) models only. A graph describing the DDR bandwidth utilized by each context of the network
(averaged over the context length). Available only when ­­runtime­data is provided.

There are four factors that contribute to DDR usage:

• Weights/Configs – The weights of the next context, and its configuration registers.

• DDR Buffers – Some contexts might include long skip connections, so the DDR is being used for buffering this
large amount of data.

• Inter-context tensors – The intermediate tensors that are passed between the contexts.

• Boundary tensors – The boundary (edge) tensors that are fed into the model, and the outputs of the model.

CompiledModel Graph

Unlike the graph on the Model Overview and the Optimization Details tabs, this model is the result of the compilation.
It may include slightly different layers, like the addition of shortcuts and inter-context nodes.

The graph starts with a “Context View” that shows the different contexts that the model was compiled into. By choos-
ing a context, the layers that are included in it can be observed. Also, the right side of the screen will show the
“Context Details” view. When a layer is selected, the right side of the screen will show the “Table View” with this layer
highlighted.

Context Analytics

This is the view on the right side of the screen, when a context is selected. You can switch from this view to the Table
View (per-layer) by using the icon on the top-right corner of this region.

The Context Analytics section displays information regarding the whole context in general - statistics and utilization.
In case of small (single context) model, since it has only one context, the performance details of the whole model are
determined from this context.

Note: The following section uses a terminology that is related to the internal structure of the neural core.

The Context Analytics view includes multiple sub-views:

• Context Utilization

– Compute Usage The percentage of the device compute resources to be used by the target network. Can
be expanded to view breakdown to sub-clusters (SCs), input aligners (IAs), and activation/pooling
units (APUs).

– Memory Usage The percentage of the device memory resources to be used by the target network. This
figure includes both weights and intermediate results memory. Can be expanded to view breakdown
to L2 (sub-cluster resource), L3 (cluster resource), and L4 (device resource) memories.

– Control Usage The percentage of the device control (LCU = Layer Controller Unit) resources to be used
by the target network.

• Frames Per Second Breakdown of the FPS of the context’s layers, with the lowest (bottleneck) layer high-
lighted.

• Latency Breakdown Displays a simulation of the layers as if they were running on the device. Displays a
simulation of three input tensors.

Page 140 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Table View

This view can be accessed by using the icon on the top right corner on the right side of the tab. Select which fields are
displayed, and scroll horizontally if not all the fields are visible.

The displayed fields consist of some of the fields that appear on Layer Analytics tab / Layer Details: *
Layer Name (This column stays even when scrolling) * Layer Type * Input Shape * Output Shape * Kernel Shape *
Stride * Dilation * Groups * MACs * Parameters

and in addition, Hailo performance parameters:

FPS For many frames per second this layer processes. The ratio between the real layer’s computed features,
to the actual computed features that include padding in the width dimension.The ratio between the real
layer’s computed features, to the actual computed features that include padding in the width dimen-
sion.The ratio between the real layer’s computed features, to the actual computed features that include
padding in the width dimension.

LCUs How many Layer Controllers this layer requires (for producing the layer’s FPS).

Subclusters How many sub-clusters this layer requires (for producing the layer’s FPS).

Latency How much time it takes from the moment the layer starts processing an input data, until the first
output is generated

Power The expected power to be consumed by the hardware resources that run this layer (an estimation; for
producing the layer’s FPS).

APUs How many Activation and Pooling Units this layer requires (for producing the layer’s FPS).

IAs How many Input Aligners this layer requires (for producing the layer’s FPS).

L3 weight cuts The relative amount of L3 (cluster-level) memory required by the layer’s weights.

L3 output cuts The relative amount of L3 (cluster-level) memory required for holding the layer’s outputs.

L4 cuts The relative amount of L4 (device-level) required by the layer.

defuse_mode Whether this layer was defused into multiple sub-layers, and how.

ew_add_enabled Whether this layer was merged with a nearby element-wise add operation.

active_mac_util The utilization of the this layer’s code; The relative amount of cycles that the multiply-and-
accumulate units are working.

width_align_util The ratio between the real layer’s computed features, to the actual computed features that
include padding in the width dimension.

feature_align_util The ratio between the real layer’s computed features, to the actual computed features that
include padding in the features dimension.

balance_fps_util How much time this layer is working. The layer with the lowest FPS has balance_fps_util = 1.
Other layers are IDLE at times, therefore the utilization is lower.

mac_layers_util Of this layer’s subclusters, how many are used for the calculation of the output features (not
including intermediate helper operations).

effective_mac_util Multiplication of the previous factors; What is the effective (actual) MAC utilization of this
layer, considering all above factors.

Page 141 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

7. Additional Topics

7.1. Environment Variables

In order to adjust the Dataflow Compiler behavior, the following optional functional variables could be set:

• HAILO_CLIENT_LOGS_ENABLED: Set to false to disable the log files of the Dataflow Compiler.

• HAILO_SDK_LOG_DIR: Defines which directory to write the logs into. Default to the working directory.

• HAILO_SET_MEMORY_GROWTH: Set tofalse if VRAM allocation problems occur. It disables the memory
growth flag, which affects the way TensorFlow allocates and manages its memory. More information is provided
here.

Page 142 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Part II

API Reference

Page 143 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

8. Model Build API Reference

8.1. hailo_sdk_client.runner.client_runner

Hailo DFC API client.

class hailo_sdk_client.runner.client_runner.ClientRunner(hn=None, ...)
Bases: object

Hailo DFC API client.

__init__(hn=None, hw_arch=None, hw_version=None, har=None)
DFC client constructor

Parameters

• hn – Hailo network description (HN), as a file-like object, string, dict, or HailoNN. Use
None if you intend to parse the network description from Tensorflow later. Notice: This
flag will be deprecated soon (April 2024).

• hw_arch (str, optional) – Hardware architecture to be used. Defaults to
hailo8.

• hw_version (str, optional) – Version of hardware architecture to be used. De-
faults to None, which means the DFC uses the default version. Notice: This flag will be
deprecated soon (April 2024).

• har (str or HailoArchive, optional) – Hailo Archive file path or Hailo Archive object
to initialize the runner from.

property model_script

property modifications_meta_data

force_weightless_model(weightless=True)
DFC API to force the model to work in weightless mode.

When this mode is enabled, the software emulation graph can be received from get_tf_graph()
even when the parameters are not loaded.

Note: This graph cannot be used for running inference unless the model does not require weights.

Parameters weightless (bool) – Set to True to enable weightless mode. Defaults to True.

set_keras_model(model: hailo_model_optimization.flows.inference_flow.SimulationTrainingModel)
Set Keras model after quantization-aware training. This method allows you to set the model after editing
it externally. After setting the model, new quantized weights are generated.

Parameters model (SimulationTrainingModel) – model to set.

get_keras_model(context: hailo_sdk_client.exposed_definitions.InferenceContext, trainable=False) ...)
Get a Keras model for inference. This method returns a model for inference in either native, fp-
optimized, quantized, or HW mode. Editing the keras model won’t affect quantization/compilation unless
set_keras_model() API is being used.

Parameters

• context (InferenceContext) – inference context generated by infer_context.

• trainable (bool, optional) – indicate whether the returned model should be
trainable or not. set_keras_model() only supports trainable models.

Page 144 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Example

>>> with runner.infer_context(InferenceContext.SDK_NATIVE) as ctx:
>>> result = runner.get_keras_model(context=ctx)

infer(context: hailo_sdk_client.exposed_definitions.InferenceContext, dataset, ...)
DFC API for inference. This method infers the given dataset on the model in either full-precision, emula-
tion (quantized), or HW and returns the output.

Parameters

• context (InferenceContext) – inference context generated by infer_context

• dataset – data for Inference. The type depends on the data_type parameter.

• data_type (InferenceDataType) – dataset’s data type, based on enum values:

– auto – Automatically detection.

– np_array – numpy.ndarray, or dictionary with input layer names as keys, and
values types of numpy.ndarray.

– dataset – tensorflow.data.Dataset object with a valid signature. sig-
nature should be either ((h, w, c), image_info) or ({‘input_layer1’: (h1, w1, c1), ‘in-
put_layer2’: (h2, w2, c2)}, image_info) image_info can be an empty dict for inference

– npy_file – path to a npy or npz file

– npy_dir – path to a npy or npz dir, assumes the same shape to all the items

• data_count (int) – optional argument to limit the number of elements to infer

• batch_size (int) – batch size for inference

Returns list: list of outputs. Entry i in the list is the output of input i. In case the model contains
more than one output, each entry is a list of all the outputs.

Example

>>> with runner.infer_context(InferenceContext.SDK_NATIVE) as ctx:
>>> result = runner.infer(
... context=ctx,
... dataset=tf.data.Dataset.from_tensor_slices(np.ones((1, 10))),
... batch_size=1
...)

load_model_script(model_script=None, append=False)
DFC API for manipulation of the model build params. This method loads a script and applies it to the
existing HN, i.e., modifies the specific params in each layer, and sets the model build script for later use.

Parameters

• model_script (str, pathlib.Path) – A model script is given as either a path
to the ALLS file or commands as a string allowing the modification of the current model,
before quantization / native emulation / profiling, etc. The SDK parses the script, and
applies the commands as follows:

1. Model modification related commands – These commands are executed during opti-
mization.

2. Quantization related commands – Some of these commands modify the HN, so af-
ter the modification, each layer (possibly) has new quantization parameters. Other
commands are executed during optimization.

3. Allocation and compilation related commands – These commands are executed during
compilation.

• append (boolean) – Whether to append the commands to a previous script (if exists)
or use only the new script. Addition is allowed only in native mode. Defaults to False.

Page 145 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Returns A copy of the new modified HN (JSON dictionary).

Return type dict

load_params(params, params_kind=None)
Load network params (weights).

Parameters

• params – If a string, this is treated as the path of the npz file to load. If a dict, this is
treated as the params themselves, where the keys are strings and the values are numpy
arrays.

• params_kind (str, optional) – Indicates whether the params to be loaded are
native, native after BN fusion, or quantized.

Returns Kind of params that were actually loaded.

Return type str

save_params(path, params_kind=’native’)
Save all model params to a npz file.

Parameters

• path (str) – Path of the npz file to save.

• params_kind (str, optional) – Indicates whether the params to be saved are
native, native after BN fusion, or quantized.

compile()
DFC API for compiling current model to Hailo hardware.

Returns Data of the HEF that contains the hardware representation of this model.

Return type bytes

Example

>>> runner = ClientRunner(har=”my_model.har”)
>>> compiled_model = runner.compile()

infer_context(inference_context: hailo_sdk_client.exposed_definitions.InferenceContext, ...)
DFC API for generating context for inference. The context must be used with the infer API.

Parameters

• inference_context (InferenceContext) – Enum to control which infer-
ence types to use.

• device_ids (list of str, optional) – device IDs to create VDevice from, call
Device.scan() to get a list of all available devices. Excludes ‘params’.

• nms_score_threshold (float, optional) – score threshold filtering for on
device nms. Relevant only when nms is used.

Raises

• HailoPlatformMissingException – In case, HW inference is requested but
HailoRT is not installed.

• InvalidArgumentsException – In case, InferenceContext is not recognized.

Page 146 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Example

>>> with runner.infer_context(InferenceContext.SDK_NATIVE) as ctx:
>>> result = runner.infer(
... context=ctx,
... dataset=tf.data.Dataset.from_tensor_slices(np.ones((1, 10))),
... batch_size=1
...)

translate_onnx_model(model=None, net_name=’model’, start_node_names=None, ...)
DFC API for parsing an ONNX model. This creates a runner with loaded HN (model) and parameters.

Parameters

• model (str or bytes or pathlib.Path) – Path or bytes of the ONNX model
file to parse.

• net_name (str) – Name of the new HN to generate.

• start_node_names (list of str, optional) – List of ONNX nodes that
parsing will start from.

• end_node_names (list of str, optional) – List of ONNX nodes, that the
parsing can stop after all of them are parsed.

• net_input_shapes (dict or list, optional) – A dictionary describing the
input shapes for each of the start nodes given in start_node_names, where the keys are
the names of the start nodes and the values are their corresponding input shapes. Use
only when the original model has dynamic input shapes (described with a wildcard de-
noting each dynamic axis, e.g. [b, c, h, w]). Can be a list (e.g. [b, c, h, w]) for a single input
network.

• augmented_path – Path to save a modified model, augmented with tensors names
(where applicable).

• disable_shape_inference – When set to True, shape inference with ONNX
runtime will be disabled.

• disable_rt_metadata_extraction – When set to True, run-
time metadata extraction will be disabled. Generating a model using
get_hailo_runtime_model() won’t be supported in this case.

Note: Using a non-default start_node_names requires the model to be shape inference com-
patible, meaning either it has a real input shape, or, in the case of a dynamic input shape, the
net_input_shapes field is provided to specify the input shapes of the given start nodes. The order
of the output nodes is determined by the order of the end_node_names.

Returns The first item is the HN JSON as a string. The second item is the params dict.

Return type tuple

translate_tf_model(model_path=None, net_name=’model’, start_node_names=None, ...)
DFC API for parsing a TF model given by a checkpoint/pb/savedmodel/tflite file. This creates a runner with
loaded HN (model) and parameters.

Parameters

• model_path (str) – Path of the file to parse. Supported formats: Checkpoint (TF1):
Model name with .ckpt suffix (without the final .meta). Frozen (TF1): Frozen graph, model
name with .pb suffix. SavedModel (TF2): Saved model export from Keras, file named
saved_model.pb|pbtxt from the model dir. TFLite: Tensorflow lite model, converted
from ckpt/frozen/Keras to file with .tflite suffix.

• net_name (str) – Name of the new HN to generate.

Page 147 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• start_node_names (list of str, optional) – List of TensorFlow nodes
that parsing will start from. If this parameter is specified, start_node_name should re-
main empty.

• end_node_names (list of str, optional) – List of Tensorflow nodes, which
the parsing can stop after all of them are parsed.

• tensor_shapes (dict, optional) – A dictionary containing names of tensors
and shapes to set in the TensorFlow graph. Use only for placeholders with a wildcard
shape.

Note:

• The order of the output nodes is determined by the order of the end_node_names.

• TF1 model support will be deprecated in the future (April 2024), we recommend moving to TFLite.

Returns The first item is the HN JSON, as a string. The second item is the params dict.

Return type tuple

Example

>>> model = keras.Sequential(
... layers.Conv2D(32, 3, activation=”relu”),
... layers.Conv2D(64, 3, activation=”relu”),
... layers.MaxPooling2D(3)])
>>> model.predict(random.uniform(shape=(1, 32, 32, 3), minval=­1,�
↪→maxval=1))
>>> converter = tf.lite.TFLiteConverter.from_keras_model(model)
>>> tflite_model = converter.convert()
>>> with tf.io.gfile.GFile('my_model.tflite', ”wb”) as f:
... f.write(tflite_model)
>>> runner = ClientRunner(hw_arch='hailo8')
>>> hn, params = runner.translate_tf_model(
... 'my_model.tflite', 'MyCoolModel', ['sequential/Conv1'], [
↪→'sequential/Maxpool'])

join(runner, scope1_name=None, scope2_name=None, join_action=JoinAction.NONE, join_action_info=None)
DFC API to join two models, so they will be compiled together.

Parameters

• runner (ClientRunner) – The client runner to join to this one.

• scope1_name (dict or str, optional) – In case dict is given, mapping be-
tween existing scope names to new scope names for the layers of this model (see exam-
ple below). In case str is given, the scope name will be used for all layers of this model.
A string can be used only when there is a single scope name.

• scope2_name (dict or str, optional) – Same as scope1_name for the runner
to join.

Example:

>>> net1_scope_names = {'net1_scope1': 'net_scope1',
... 'net1_scope2': 'net_scope2'}
>>> net2_scope_names = {'net2': 'net_scope3'}
>>> runner1.join(runner2, scope1_name=net1_scope_names,
... scope2_name=net2_scope_names)

• join_action (JoinAction, optional) – Type of action to run in addition to joining
the models:

Page 148 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

– NONE: Join the graphs without any connection between them.

– AUTO_JOIN_INPUTS: Automatically detect inputs for both graphs and combines
them into one. This only works when both networks have a single input of the same
shape.

– AUTO_CHAIN_NETWORKS: Automatically detect the output of this model and the
input of the other model, and connect them. Only works when this model has a single
output, and the other model has a single input, of the same shape.

– CUSTOM: Supply a custom dictionaryjoin_action_info, which specifies which
nodes from this model need to be connected to which of the nodes in the other graph.
If keys and values are inputs, the inputs are joined. If keys are outputs, and values are
inputs, the networks are chained as described in the dictionary.

• join_action_info (dict, optional) – Join information to be given when
join_action is NONE, as explained above.

Example

>>> info = {'net1/output_layer1': 'net2/input_layer2',
... 'net1/output_layer2': 'net2/input_layer1'}
>>> runner1.join(runner2, join_action=JoinAction.CUSTOM, join_action_
↪→info=info)

profile(should_use_logical_layers=True, hef_filename=None, runtime_data=None, stream_fps=None, ...)
DFC API of the Profiler.

Parameters

• hef_filename (str, optional) – HEF file path. If given, the HEF file is used. If
not given and the HEF from the previous compilation is cached, the cached HEF is used;
Otherwise, the automatic mapping tool is used. Use compile() to generate and set
the HEF. Only in post-placement mode. Defaults to None.

• should_use_logical_layers (bool, optional) – Indicates whether the
Profiler should combine all physical layers into their original logical layer in the report.
Defaults to True.

• runtime_data (str, optional) – runtime_data.json file path produced by
hailortcli run2 measure-fw-actions.

• stream_fps (float, optional) – FPS used for power and bandwidth calcula-
tion.

Returns The first item is a JSON with the profiling result summary. The second item is a CSV
table with detailed profiling information about all model layers. The third item is the latency
data. Fourth is accuracy data.

Return type tuple

Example

>>> runner = ClientRunner(har=”my_model.har”)
>>> export = runner.profile()

save_autogen_allocation_script(path)
DFC API for retrieving listed operations of the last allocation in .alls format.

Parameters path (str) – Path where the script is saved.

Returns False if an autogenerated script was not created; otherwise it returns True.

Return type bool

property model_name
Get the current model (network) name.

Page 149 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

property model_optimization_commands

property hw_arch

property state
Get the current model state.

property hef
Get the latest HEF compilation.

property nms_config_file

property nms_engine

property nms_meta_arch

get_params(keys=None)
Get the native (non-quantized) params the runner uses.

Parameters keys (list of str, optional) – List of params to retrieve. If not specified,
all params are retrieved.

get_params_translated(keys=None)
Get the quantized params the SDK uses.

Parameters keys (list of str, optional) – List of params to retrieve. If not specified,
all params are retrieved.

get_params_fp_optimized(keys=None)
Get the fp optimized params.

Parameters keys (list of str, optional) – List of params to retrieve. If not specified,
all params are retrieved.

get_params_statistics(keys=None)
Get the optimization statistics. During the optimization stage, we gather statistics about the model and
the optimization algorithms. This method returns this information in a ModelParams structure.

Parameters keys (list of str, optional) – List of params to retrieve. If not specified,
all params are retrieved.

get_hn_str()
Get the HN JSON after serialization to a formatted string.

get_hn_dict()
Get the HN of the current model as a dictionary.

get_hn()
Get the HN of the current model as a dictionary.

get_hn_model()
Get the HailoNN object of the current model.

get_native_hn_str()
Get the HN JSON after serialization to a formatted string.

get_fp_hn_str()
Get the full-precision HN JSON after serialization to a formatted string.

get_native_hn_dict()
Get the HN of the current model as a dictionary.

get_fp_hn_dict()
Get the full-precision HN of the current model as a dictionary.

get_native_hn()
Get the HN of the current model as a dictionary.

get_native_hn_model()
Get the native HailoNN object of the current model.

Page 150 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

get_fp_hn_model()
Get the full-precision HailoNN object of the current model.

set_hn(hn)
Set the HN of the current model.

Parameters hn – Hailo network description (HN), as a file-like object, string, dict orHailoNN.

save_hn(path)
Save the HN of the current model.

Parameters path (str) – Path where the hn file is saved.

save_native_hn(path)
Save the HN of the current model.

Parameters path (str) – Path where the hn file is saved.

save_har(har_path, compressed=False, save_original_model=False)
Save the current model serialized as Hailo Archive file.

Parameters

• har_path – Path for the created Hailo archive directory.

• compressed – Indicates whether to compress the archive file. Defaults to False.

• save_original_model – Indicates whether to save the original model (TF/ONNX)
in the archive file. Defaults to False.

load_har(har=None)
Set the current model properties using a given Hailo Archive file.

Parameters har (str or HailoArchive) – Path to the Hailo Archive file or an initialized
HailoArchive object to restore.

model_summary()
Prints summary of the model layers.

optimize_full_precision(calib_data=None, data_type=None)

Apply model optimizations to the model, keeping full-precision:

1. Fusing various layers (e.g., conv and elementwise-add, fold batch_normalization, etc.), including
folding of fused layers params.

2. Apply model modification commands from the model script (e.g., resize input, transpose, color
conversion, etc.)

3. Run structural optimization algorithms (e.g., dead channels removal, tiling squeeze & excite, etc.)

Parameters

• calib_data (optional) – Calibration data for optimization algorithms that require
inference on actual input data. The type depends on the data_type parameter.

• data_type (optional, CalibrationDataType) – calib_data’s data type, based
on enum values:

– auto – Automatically detected.

– np_array – numpy.ndarray, or dictionary with input layer names as keys, and
values types of numpy.ndarray.

– dataset – tensorflow.data.Dataset object with valid signature. sig-
nature should be either ((h, w, c), image_info) or ({‘input_layer1’: (h1, w1, c1), ‘in-
put_layer2’: (h2, w2, c2)}, image_info) image_info can be an empty dict for the quanti-
zation

– npy_file – path to a npy or npz file

Page 151 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

– npy_dir – path to a npy or npz dir. Assumes the same shape for all the items

analyze_noise(dataset, data_type=CalibrationDataType.auto, data_count: int = None, batch_size: int = ...)

Run layer noise analysis on a quantized model:

• Analyze the model accuracy

• Generate analysis data to be visualized in the Hailo Model profiler

Parameters

• dataset – data for analysis. The type depends on the data_type parameter.

• data_type (optional, InferenceDataType) – dataset’s data type, based on
enum values:

– auto – Automatically detection.

– np_array – numpy.ndarray, or dictionary with input layer names as keys, and
values types of numpy.ndarray.

– dataset – tensorflow.data.Dataset object with a valid signature. sig-
nature should be either ((h, w, c), image_info) or ({‘input_layer1’: (h1, w1, c1), ‘in-
put_layer2’: (h2, w2, c2)}, image_info) image_info can be an empty dict for inference

– npy_file – path to a npy or npz file.

– npy_dir – path to a npy or npz dir, assumes the same shape to all the items.

• data_count (optional, int) – optional argument to limit the number of ele-
ments for analysis

• batch_size (optional, int) – batch size for analysis

• analyze_mode (optional, str) – selects the analyzing mode that will run sim-
ple or advanced.

optimize(calib_data, data_type=CalibrationDataType.auto, work_dir=None)
Apply optimizations to the model:

• Modify the network layers.

• Quantize the model’s params, using optional pre-process and post-process algorithms.

Parameters

• calib_data – Calibration data for Equalization and quantization process. The type
depends on the data_type parameter.

• data_type (CalibrationDataType) – calib_data’s data type, based on enum
values:

– auto – Automatically detected.

– np_array – numpy.ndarray, or dictionary with input layer names as keys, and
values types of numpy.ndarray.

– dataset – tensorflow.data.Dataset object with valid signature. sig-
nature should be either ((h, w, c), image_info) or ({‘input_layer1’: (h1, w1, c1), ‘in-
put_layer2’: (h2, w2, c2)}, image_info) image_info can be an empty dict for the quanti-
zation

– npy_file – path to a npy or npz file

– npy_dir – path to a npy or npz dir. Assumes the same shape for all the items

• work_dir (optional, str) – If not None, dump quantization debug outputs to
this directory.

Page 152 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

get_hailo_runtime_model()
Generate model allowing to run the full ONNX graph using ONNX runtime, including the parts that are
offloaded to the Hailo-8 (between the start and end nodes) and the parts that are not.

save_parsing_report(report_path)
Save the parsing report to a given path.

Parameters report_path (string) – Path to save the file.

get_detected_nms_config(meta_arch, config_path=None)
Get the detected NMS config file: anchors detected automatically from the model’s post-process, and
default values corresponding to the meta-architecture specified.

Parameters

• meta_arch (NMSMetaArchitectures) – Meta architecture of the NMS post
process.

• config_path (string, optional) – Path to save the generated config file. De-
faults to ‘{meta_arch}_nms_config.json’.

property get_mo_auto_alls

property use_service

property original_model_meta

8.2. hailo_sdk_client.exposed_definitions

This module contains enums used by several SDK APIs.

class hailo_sdk_client.exposed_definitions.JoinAction(value)
Bases: enum.Enum

Special actions to perform when joining models.

See also:

The join() API uses this enum.

NONE = 'none'
join the graphs without any connection between them.

AUTO_JOIN_INPUTS = 'auto_join_inputs'
Automatically detects inputs for both graphs and combines them into one. This only works when both
networks have a single input of the same shape.

AUTO_CHAIN_NETWORKS = 'auto_chain_networks'
Automatically detects the output of this model and the input of the other model, and connect them. Only
works when this model has a single output, and the other model has a single input, of the same shape.

CUSTOM = 'custom'
Supply a custom dictionary join_action_info, which specifies which nodes from this model need
to be connected to which of the nodes in the other graph. If keys and values are inputs, we join the inputs.
If keys are outputs, and values are inputs, we chain the networks as described in the dictionary.

class hailo_sdk_client.exposed_definitions.JoinOutputLayersOrder(value)
Bases: enum.Enum

Enum-like class to determine the output order of a model after joining with another model.

NEW_OUTPUTS_LAST = 'new_outputs_last'
First are the outputs of this model who remained outputs, then outputs of the other model. The order in
each sub-list is equal to the original order.

NEW_OUTPUTS_FIRST = 'new_outputs_first'
First are the outputs of the other model, then outputs of this model who remained outputs. The order in
each sub-list is equal to the original order.

Page 153 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

NEW_OUTPUTS_IN_PLACE = 'new_outputs_in_place'
If the models are chained, the outputs of the other model are inserted, in their original order, to the
output list of this model instead of the first output which is no longer an output. If the models are joined
by inputs, the other model’s outputs are added last.

class hailo_sdk_client.exposed_definitions.NNFramework(value)
Bases: enum.Enum

Enum-like class for different supported neural network frameworks.

TENSORFLOW = 'tf'
Tensorflow 1.x

TENSORFLOW2 = 'tf2'
Tensorflow 2.x

TENSORFLOW_LITE = 'tflite'
Tensorflow Lite

ONNX = 'onnx'
ONNX

class hailo_sdk_client.exposed_definitions.States(value)
Bases: enum.Enum

Enum-like class with all the ClientRunner states.

UNINITIALIZED = 'uninitialized'
Uninitialized state when generating a new ClientRunner

ORIGINAL_MODEL = 'original_model'
ClientRunner state after setting the original model path (ONNX/TF model)

HAILO_MODEL = 'hailo_model'
ClientRunner state after parsing (calling thetranslate_onnx_model()/translate_tf_model()
API)

FP_OPTIMIZED_MODEL = 'fp_optimized_model'
ClientRunner state after calling the optimize_full_precision() API. This state includes
all the full-precision optimization such as model modification commands.

QUANTIZED_MODEL = 'quantized_model'
ClientRunner state after calling the optimize() API. This state includes quantized weights.

COMPILED_MODEL = 'compiled_model'
ClientRunner state after compilation (calling the compile() API).

class hailo_sdk_client.exposed_definitions.InferenceContext(value)
Bases: enum.Enum

Enum-like class with all the possible inference contexts modes

SDK_NATIVE = 'sdk_native'
SDK_NATIVE context is for inference of the original model (without any modification).

SDK_FP_OPTIMIZED = 'sdk_fp_optimized'
SDK_FP_OPTIMIZED context includes all model modification in floating-point (such as normalization, nms,
and so on).

SDK_QUANTIZED = 'sdk_quantized'
SDK_QUANTIZED context is for inference of the quantized model. Used to measure degradation caused
by quantization.

SDK_HAILO_HW = 'sdk_hailo_hw'
SDK_HAILO_HW inference context to run on the Hailo-HW.

SDK_BIT_EXACT = 'sdk_bit_exact'
SDK_BIT_EXACT (preview) bit exact emulation. Currently not all layers and mode are supported

Page 154 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

8.3. hailo_sdk_client.hailo_archive.hailo_archive

class hailo_sdk_client.hailo_archive.hailo_archive.HailoArchive(state, ...)
Bases: object

Hailo Archive representation.

8.4. hailo_sdk_client.tools.hn_modifications

hailo_sdk_client.tools.hn_modifications.translate_rgb_dataset(rgb_dataset, ...)
Translate a given RGB format images dataset to YUV or BGR format images. This function is useful when the
model expects YUV or BGR images, while the calibration images used for quantization are in RGB.

Parameters

• rgb_dataset (numpy.ndarray) – Numpy array of RGB format images with shape
(image_count, h, w, 3) to translate.

• color_type (ColorType) – type of color to translate the data to. Defaults to yuv.

Page 155 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

9. Common API Reference

9.1. hailo_sdk_common.model_params.model_params

class hailo_sdk_common.model_params.model_params.ModelParams(params, ...)
Bases: object

Dict-like class that contains all parameters used by a model such as weights, biases, etc.

9.2. hailo_sdk_common.hailo_nn.hailo_nn

class hailo_sdk_common.hailo_nn.hailo_nn.HailoNN(network_name=None, stage=None, ...)
Bases: networkx.classes.digraph.DiGraph

Hailo NN representation. This is the Python class that corresponds to HN files.

stable_toposort(key=None)
Get a generator over the model’s layers, topologically sorted.

Example

>>> example_hn = '''{
... ”name”: ”Example”,
... ”layers”: {
... ”in”: {”type”: ”input_layer”, ”input”: [], ”output”: [”out”], ”input_
↪→shape”: [­1, 10]},
... ”out”: {”type”: ”output_layer”, ”input”: [”in”], ”output”: [],
↪→”input_shape”: [­1, 10]}
... }
... }'''
>>> hailo_nn = HailoNN.from_hn(example_hn)
>>> for layer in hailo_nn.stable_toposort():
... print('The layer name is ”{}”'.format(layer.name))
The layer name is ”in”
The layer name is ”out”

to_hn(network_name, npz_path=None, json_dump=True, should_get_default_params=False)
Export Hailo model to JSON format (HN) and params NPZ file. The NPZ is saved to a file.

Parameters

• network_name (str) – Name of the network.

• npz_path (str, optional) – Path to save the parameters in NPZ format. If it is
None, no file is saved. Defaults to None.

• json_dump (bool, optional) – Indicates whether to dump the HN to a formatted
JSON, or leave it as a dictionary. Defaults to True, which means to dump.

• should_get_default_params (bool, optional) – Indicates whether the
HN should include fields with default values. Defaults to False, which means they will not
be included.

Returns The HN, as a string or a dictionary, depending on the json_dump argument.

to_hn_npz(network_name, json_dump=True, should_get_default_params=False)
Export Hailo model to JSON format (HN) and params NPZ file. The NPZ is returned to the caller.

Parameters

• network_name (str) – Name of the network.

• json_dump (bool, optional) – Indicates whether to dump the HN into a format-
ted JSON, or leave it as a dictionary. Defaults to True, which means to dump.

Page 156 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

• should_get_default_params (bool, optional) – Indicates whether the
HN should include fields with default values. Defaults to False, which means they will not
be included.

Returns The first item is the HN, as a string or a dictionary, depending on the json_dump
argument. The second item contains the model’s parameters as a dictionary.

Return type tuple

set_input_tensors_shapes(inputs_shapes)
Set the tensor shape (resolution) for each input layer.

Parameters inputs_shapes (dict) – Each key is a name of an input layer, and each value
is the new shape to assign to it. Currently doesn’t support changing number of features.

static from_fp(fp)
Get Hailo model from a file.

static from_hn(hn_json)
Get Hailo model from HN raw JSON data.

static from_parsed_hn(hn_json, validate=True)
Get Hailo model from HN dictionary.

9.3. hailo_sdk_common.hailo_nn.hn_definitions

class hailo_sdk_common.hailo_nn.hn_definitions.NMSMetaArchitectures(value)
Bases: str, enum.Enum

Network meta architectures to which on-chip/ on-host post-processing can be added.

SSD = 'ssd'
Single Shot Detection meta architecture.

CENTERNET = 'centernet'
Centernet meta architecture

YOLOV5 = 'yolov5'
Yolov5 meta architecture

YOLOX = 'yolox'
Yolox meta architecture

YOLOV5_SEG = 'yolov5_seg'
Yolov5 seg meta architecture

YOLOV6 = 'yolov6'
Yolov6 meta architecture

Page 157 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

Hailo Dataflow Compiler User Guide

Bibliography

[Meller2019] Eldad Meller, Alexander Finkelstein, Uri Almog and Mark Grobman. “Same, same but different: Recover-
ing neural network quantization error through weight factorization.” International Conference on Machine
Learning, 2019. http://proceedings.mlr.press/v97/meller19a/meller19a.pdf

[Finkelstein2019] Alexander Finkelstein, Uri Almog and Mark Grobman. “Fighting quantization bias with bias.” Confer-
ence on Computer Vision and Pattern Recognition Workshops, 2019. https://arxiv.org/pdf/1906.03193.pdf

[McKinstry2019] Jeffrey McKinstry, Steven Esser, Rathinakumar Appuswamy, Deepika Bablani, John Arthur, Izzet
Yildiz and Dharmendra Modha. “Discovering Low-Precision Networks Close to Full-Precision Networks
for Efficient Embedded Inference.” Conference on Neural Information Processing Systems, 2019. https:
//www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-11.pdf

[Nagel2020] Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos and Tijmen Blankevoort. “Up or Down?
Adaptive Rounding for Post-Training Quantization.” International Conference on Machine Learning, 2020.
https://arxiv.org/pdf/2004.10568.pdf

[Vosco2021] Niv Vosco, Alon Shenkler and Mark Grobman. “Tiled Squeeze-and-Excite: Channel Atten-
tion With Local Spatial Context.” International Conference on Computer Vision Workshops, 2021.
https://openaccess.thecvf.com/content/ICCV2021W/NeurArch/papers/Vosco_Tiled_Squeeze-and-Excite_
Channel_Attention_With_Local_Spatial_Context_ICCVW_2021_paper.pdf

Page 158 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

http://proceedings.mlr.press/v97/meller19a/meller19a.pdf
https://arxiv.org/pdf/1906.03193.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-11.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-11.pdf
https://arxiv.org/pdf/2004.10568.pdf
https://openaccess.thecvf.com/content/ICCV2021W/NeurArch/papers/Vosco_Tiled_Squeeze-and-Excite_Channel_Attention_With_Local_Spatial_Context_ICCVW_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021W/NeurArch/papers/Vosco_Tiled_Squeeze-and-Excite_Channel_Attention_With_Local_Spatial_Context_ICCVW_2021_paper.pdf

Hailo Dataflow Compiler User Guide

PythonModule Index

h
hailo_sdk_client.exposed_definitions,

153
hailo_sdk_client.hailo_archive.hailo_archive,

155
hailo_sdk_client.runner.client_runner,

144
hailo_sdk_client.tools.hn_modifications,

155
hailo_sdk_common.hailo_nn.hailo_nn,

156
hailo_sdk_common.hailo_nn.hn_definitions,

157
hailo_sdk_common.model_params.model_params,

156

Page 159 Release 3.27.0 Confidential and Proprietary | Copyright © 2024 – Hailo Technologies Ltd.

	I User Guide
	Hailo Dataflow Compiler Overview
	Introduction
	Model Build Process
	Tensorflow and ONNX Translation
	Profiler
	Emulator
	Model Optimization
	Compiling the Model into a Binary Image

	Deployment Process
	Supported Hardware Architectures
	Hailo-8™ family
	hailo8
	hailo8l
	hailo8r

	Hailo-15™ family
	hailo15h
	hailo15m

	Changelog
	Dataflow Compiler Installation
	System Requirements
	Installing / Upgrading Hailo Dataflow Compiler

	Tutorials
	Dataflow Compiler Tutorials Introduction
	Usage

	Parsing Tutorial
	Hailo Parsing Example from Tensorflow CKPT to HAR
	Hailo Archive
	Parsing Example from ONNX to HAR
	Parsing Example from Tensorflow 2
	Common Conversion Methods from Tensorflow to Tensorflow Lite

	Model Optimization Tutorial
	Quick Optimization Tutorial
	In-Depth Optimization Tutorial
	Preliminary step: Create testing environment
	Preliminary Step: Create Pre and Post Processing Functions
	Step 1: Test Native Model
	Steps 2,3: Apply Model Modifications, and Test Modified Model
	Step 4,5: Optimize the Model and Test its Accuracy
	Step 6: How to Raise Accuracy

	Advanced Model Modifications Tutorial
	Adding on-chip input format conversion through model script commands
	Adding On-chip Input Resize Through Model Script Commands
	Adding Non-Maximum Suppression (NMS) Layer Through Model Script Commands

	Advanced Optimization - Compression and Optimization Levels

	Compilation Tutorial
	Hailo Compilation Example from Hailo Archive Quantized Model to HEF
	Profiler tool

	Inference Tutorial
	Standalone Hardware Deployment
	Running Hardware Inference

	Streaming Inference
	DFC Inference in Tensorflow Environment
	Profiler with Runtime Data
	Notes on the Profiler with runtime data

	Accuracy Analysis Tool Tutorial
	Input Definitions
	Preparing the Model
	Accuracy Analysis
	Visualizing the Results
	SNR Chart
	Layers Information

	Re-Optimizing the Model

	Quantization Aware Training Tutorial
	Input Definitions
	Full Precision Training
	Translation of the Model
	Running QAT
	Knowledge Distillation and QAT

	Building Models
	Translating Tensorflow and ONNX Models
	Using the Tensorflow Parser
	Supported Tensorflow APIs
	Slim APIs
	Keras APIs
	Group Conv Parsing
	Feature Shuffle Parsing
	Squeeze and Excitation Block Parsing
	Threshold Activation Parsing
	Delta Activation Parsing

	Using the Tensorflow Lite Parser
	Supported Tensorflow Lite Operations

	Using the ONNX Parser
	Supported ONNX Operations
	Exporting Models from PyTorch to ONNX
	Supported PyTorch APIs

	Layer Ordering Limitations
	Supported Padding Schemes
	NMS Post Processing
	SSD
	CenterNet
	YOLOv5

	Reasons and Solutions for Differences in the Parsed Model

	Model Optimization
	Model Optimization Workflow
	Model Optimization Flavors
	Debugging Accuracy

	Optimization Related Model Script Commands
	model_modification_commands
	input_conversion
	transpose
	normalization
	nms_postprocess
	change_output_activation
	logits_layer
	set_seed
	resize:

	model_optimization_flavor
	model_optimization_config
	compression_params
	negative_exponent
	calibration
	checker_cfg

	quantization_param
	bias_mode
	precision_mode
	max_bias_feed_repeat
	quantization_groups
	force_range_out
	max_elementwise_feed_repeat
	null_channels_cutoff_factor
	output_encoding_vector

	pre_quantization_optimization
	dead_channels_removal
	zero_static_channels
	se_optimization
	equalization
	equalization per-layer
	dead_layers_removal
	weights_clipping
	activation_clipping
	ew_add_fusing
	layer_decomposition
	smart_softmax_stats
	defuse
	resolution_reduction
	resolution_reduction per-layer
	global_avgpool_reduction
	add_shortcut_layer
	matmul_correction

	post_quantization_optimization
	bias_correction
	bias_correction per-layer
	finetune
	adaround
	adaround per-layer
	mix_precision_search

	Model Compilation
	Basic Compilation Flow
	For Inference Using TAPPAS or With Native HailoRT API
	For Inference using ONNX Runtime
	For Inference with Python Using TensorFlow

	Compilation Related Model Script Commands
	Usage
	Automatic Model Script
	Context Switch Parameters
	Allocator Parameters
	Resource Calculation Flow Parameters
	Place
	Shortcut
	Portal
	L4 Portal
	DDR Portal
	Concatenation
	De-fuse
	Merge
	Compilation Parameters
	HEF Parameters
	Outputs Multiplexing
	From TF
	Buffers
	Feature Splitter
	Shape Splitter
	Platform Param
	Performance Param

	Model Scripts
	Supported Layers
	Convolution
	Max Pooling
	Dense
	Average Pooling
	Concat
	Deconvolution
	Depthwise Convolution
	Group Convolution
	Group Deconvolution and Depthwise Deconvolution
	Elementwise Multiplication and Division
	Add and Subtract
	Input Normalization
	Multiplication by Scalar
	Batch Normalization
	Resize
	Depth to Space
	Space to Depth
	Softmax
	LogSoftmax
	Argmax
	Reduce Max
	Reduce Sum
	Reduce Sum Square
	Feature Shuffle
	Features Split
	Slice
	Reshape
	External Padding
	Matmul
	Multi Head Attention
	RNN and LSTM
	Transpose
	Activations
	Square, Pow
	Elementwise Max
	L2 Operators
	Note about Symmetric Padding

	Profiler and Other Command Line Tools
	Using Hailo Command Line Tools
	Model Conversion Flow
	Analysis and Visualization
	Tutorials

	Running the Profiler
	Understanding the Profiler Report
	Header
	Model Overview tab
	Model Details (top drawer)
	Model Graph
	Performance Details

	Optimization Details Tab
	Global Optimization Details (top drawer)
	Model Modifications (top drawer)
	SNR Chart (top drawer)
	Model Graph
	Layer Analytics
	Model Table

	Compilation & Runtime Details Tab
	Model Performance (top drawer)
	Measured Runtime Graph (top drawer)
	Measured Bandwidth Graph (top drawer)
	Compiled Model Graph
	Context Analytics
	Table View

	Additional Topics
	Environment Variables

	II API Reference
	Model Build API Reference
	hailo_sdk_client.runner.client_runner
	hailo_sdk_client.exposed_definitions
	hailo_sdk_client.hailo_archive.hailo_archive
	hailo_sdk_client.tools.hn_modifications

	Common API Reference
	hailo_sdk_common.model_params.model_params
	hailo_sdk_common.hailo_nn.hailo_nn
	hailo_sdk_common.hailo_nn.hn_definitions

	Bibliography
	Python Module Index

